BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26551220)

  • 1. Bioremediation of industrially contaminated soil using compost and plant technology.
    Taiwo AM; Gbadebo AM; Oyedepo JA; Ojekunle ZO; Alo OM; Oyeniran AA; Onalaja OJ; Ogunjimi D; Taiwo OT
    J Hazard Mater; 2016 Mar; 304():166-72. PubMed ID: 26551220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Using kenaf (Hibiscus cannabinus) to reclaim multi-metal contaminated acidic soil].
    Yang YX; Lu HL; Zhan SS; Deng TH; Lin QQ; Wang SZ; Yang XH; Qiu RL
    Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):832-8. PubMed ID: 23755502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoextraction of As and Fe using Hibiscus cannabinus L. from soil polluted with landfill leachate.
    Meera M; Agamuthu P
    Int J Phytoremediation; 2012 Feb; 14(2):186-99. PubMed ID: 22567704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus.
    Abioye OP; Agamuthu P; Abdul Aziz AR
    Biodegradation; 2012 Apr; 23(2):277-86. PubMed ID: 21870160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals.
    Arbaoui S; Evlard A; Mhamdi Mel W; Campanella B; Paul R; Bettaieb T
    Biodegradation; 2013 Jul; 24(4):563-7. PubMed ID: 23436151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil.
    Tzvetkova N; Miladinova K; Ivanova K; Georgieva T; Geneva M; Markovska Y
    J Environ Biol; 2015 Jan; 36 Spec No():145-51. PubMed ID: 26591894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of soil quality after "alperujo" compost application to two contaminated soils characterised by differing heavy metal solubility.
    Alburquerque JA; de la Fuente C; Bernal MP
    J Environ Manage; 2011 Mar; 92(3):733-41. PubMed ID: 21035939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste.
    Walker DJ; Clemente R; Bernal MP
    Chemosphere; 2004 Oct; 57(3):215-24. PubMed ID: 15312738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching.
    Shrestha P; Bellitürk K; Görres JH
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30970575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of metal polluted mine soil with compost: co-composting versus incorporation.
    Tandy S; Healey JR; Nason MA; Williamson JC; Jones DL
    Environ Pollut; 2009 Feb; 157(2):690-7. PubMed ID: 18819736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated microbial process for the bioremediation of soil contaminated with toxic metals.
    White C; Sharman AK; Gadd GM
    Nat Biotechnol; 1998 Jun; 16(6):572-5. PubMed ID: 9624690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting Effects of Farmyard Manure (FYM) and Compost for Remediation of Metal Contaminated Soil.
    Sabir M; Ali A; Zia-Ur-rehman M; Hakeem KR
    Int J Phytoremediation; 2015; 17(7):613-21. PubMed ID: 25976875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.
    Salati S; Quadri G; Tambone F; Adani F
    Environ Pollut; 2010 May; 158(5):1899-906. PubMed ID: 19932537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals.
    Pedron F; Petruzzelli G; Barbafieri M; Tassi E
    Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.
    Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D
    Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect on heavy metals concentration from vermiconversion of agro-waste mixed with landfill leachate.
    Azizi AB; Choy MY; Noor ZM; Noorlidah A
    Waste Manag; 2015 Apr; 38():431-5. PubMed ID: 25670166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants.
    Gupta AK; Sinha S
    Chemosphere; 2006 Jun; 64(1):161-73. PubMed ID: 16330080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste.
    Clemente R; Almela C; Bernal MP
    Environ Pollut; 2006 Oct; 143(3):397-406. PubMed ID: 16472894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation and fractionation of copper, iron, manganese, and zinc in calcareous soils amended with composts.
    Zinati GM; Li Y; Bryan HH
    J Environ Sci Health B; 2001 Mar; 36(2):229-43. PubMed ID: 11409501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.