These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 26551614)
1. Post-Synthesis Incorporation of ⁶⁴Cu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. Riedinger A; Avellini T; Curcio A; Asti M; Xie Y; Tu R; Marras S; Lorenzoni A; Rubagotti S; Iori M; Capponi PC; Versari A; Manna L; Seregni E; Pellegrino T J Am Chem Soc; 2015 Dec; 137(48):15145-51. PubMed ID: 26551614 [TBL] [Abstract][Full Text] [Related]
2. Integrin αvβ3-Targeted [ Cui L; Xiong C; Zhou M; Shi S; Chow DS; Li C Bioconjug Chem; 2018 Dec; 29(12):4062-4071. PubMed ID: 30404438 [TBL] [Abstract][Full Text] [Related]
3. A highly active (102) surface-induced rapid degradation of a CuS nanotheranostic platform for in situ T Dong L; Li K; Wen D; Lu Y; Du K; Zhang M; Gao X; Feng J; Zhang H Nanoscale; 2019 Jul; 11(27):12853-12857. PubMed ID: 31265050 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. Wang HY; Hua XW; Wu FG; Li B; Liu P; Gu N; Wang Z; Chen Z ACS Appl Mater Interfaces; 2015 Apr; 7(13):7082-92. PubMed ID: 25785786 [TBL] [Abstract][Full Text] [Related]
5. Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer. Zhou M; Chen Y; Adachi M; Wen X; Erwin B; Mawlawi O; Lai SY; Li C Biomaterials; 2015 Jul; 57():41-9. PubMed ID: 25913249 [TBL] [Abstract][Full Text] [Related]
6. Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions. Xie Y; Riedinger A; Prato M; Casu A; Genovese A; Guardia P; Sottini S; Sangregorio C; Miszta K; Ghosh S; Pellegrino T; Manna L J Am Chem Soc; 2013 Nov; 135(46):17630-7. PubMed ID: 24128337 [TBL] [Abstract][Full Text] [Related]
7. Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. Zhao Y; Pan H; Lou Y; Qiu X; Zhu J; Burda C J Am Chem Soc; 2009 Apr; 131(12):4253-61. PubMed ID: 19267472 [TBL] [Abstract][Full Text] [Related]
8. Biomineralization-Inspired Synthesis of Copper Sulfide-Ferritin Nanocages as Cancer Theranostics. Wang Z; Huang P; Jacobson O; Wang Z; Liu Y; Lin L; Lin J; Lu N; Zhang H; Tian R; Niu G; Liu G; Chen X ACS Nano; 2016 Mar; 10(3):3453-60. PubMed ID: 26871955 [TBL] [Abstract][Full Text] [Related]
9. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. Zhou M; Zhang R; Huang M; Lu W; Song S; Melancon MP; Tian M; Liang D; Li C J Am Chem Soc; 2010 Nov; 132(43):15351-8. PubMed ID: 20942456 [TBL] [Abstract][Full Text] [Related]
10. Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au Hu C; Chen W; Xie Y; Verma SK; Destro P; Zhan G; Chen X; Zhao X; Schuck PJ; Kriegel I; Manna L Nanoscale; 2018 Feb; 10(6):2781-2789. PubMed ID: 29359781 [TBL] [Abstract][Full Text] [Related]
11. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Liu X; Li B; Fu F; Xu K; Zou R; Wang Q; Zhang B; Chen Z; Hu J Dalton Trans; 2014 Aug; 43(30):11709-15. PubMed ID: 24950757 [TBL] [Abstract][Full Text] [Related]
12. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy. Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287 [TBL] [Abstract][Full Text] [Related]
13. CuS@mSiO2-PEG core-shell nanoparticles as a NIR light responsive drug delivery nanoplatform for efficient chemo-photothermal therapy. Liu X; Ren Q; Fu F; Zou R; Wang Q; Xin G; Xiao Z; Huang X; Liu Q; Hu J Dalton Trans; 2015 Jun; 44(22):10343-51. PubMed ID: 25970690 [TBL] [Abstract][Full Text] [Related]
14. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo. Zhang C; Fu YY; Zhang X; Yu C; Zhao Y; Sun SK Dalton Trans; 2015 Aug; 44(29):13112-8. PubMed ID: 26106950 [TBL] [Abstract][Full Text] [Related]
15. CuS Nanodots with Ultrahigh Efficient Renal Clearance for Positron Emission Tomography Imaging and Image-Guided Photothermal Therapy. Zhou M; Li J; Liang S; Sood AK; Liang D; Li C ACS Nano; 2015 Jul; 9(7):7085-96. PubMed ID: 26098195 [TBL] [Abstract][Full Text] [Related]
16. Starch Capped Atomically Thin CuS Nanocrystals for Efficient Photothermal Therapy. Zheng Z; Yu P; Cao H; Cheng M; Zhou T; Lee LE; Ulstrup J; Zhang J; Engelbrekt C; Ma L Small; 2021 Nov; 17(47):e2103461. PubMed ID: 34672082 [TBL] [Abstract][Full Text] [Related]
17. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. Tian Q; Jiang F; Zou R; Liu Q; Chen Z; Zhu M; Yang S; Wang J; Wang J; Hu J ACS Nano; 2011 Dec; 5(12):9761-71. PubMed ID: 22059851 [TBL] [Abstract][Full Text] [Related]
18. Copper Sulfide Nanoassemblies for Catalytic and Photoresponsive Eradication of Bacteria from Infected Wounds. Nain A; Wei SC; Lin YF; Tseng YT; Mandal RP; Huang YF; Huang CC; Tseng FG; Chang HT ACS Appl Mater Interfaces; 2021 Feb; 13(7):7865-7878. PubMed ID: 33586966 [TBL] [Abstract][Full Text] [Related]
19. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Li Y; Lu W; Huang Q; Huang M; Li C; Chen W Nanomedicine (Lond); 2010 Oct; 5(8):1161-71. PubMed ID: 21039194 [TBL] [Abstract][Full Text] [Related]
20. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Bai J; Liu Y; Jiang X Biomaterials; 2014 Jul; 35(22):5805-13. PubMed ID: 24767788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]