These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 26551890)

  • 1. Transformation and Immobilization of Chromium by Arbuscular Mycorrhizal Fungi as Revealed by SEM-EDS, TEM-EDS, and XAFS.
    Wu S; Zhang X; Sun Y; Wu Z; Li T; Hu Y; Su D; Lv J; Li G; Zhang Z; Zheng L; Zhang J; Chen B
    Environ Sci Technol; 2015 Dec; 49(24):14036-47. PubMed ID: 26551890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.
    Wu S; Zhang X; Sun Y; Wu Z; Li T; Hu Y; Lv J; Li G; Zhang Z; Zhang J; Zheng L; Zhen X; Chen B
    J Hazard Mater; 2016 Oct; 316():34-42. PubMed ID: 27209517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.
    Wu SL; Chen BD; Sun YQ; Ren BH; Zhang X; Wang YS
    Environ Toxicol Chem; 2014 Sep; 33(9):2105-13. PubMed ID: 24920536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833.
    Gil-Cardeza ML; Calonne-Salmon M; Gómez E; Declerck S
    Chemosphere; 2017 Nov; 187():27-34. PubMed ID: 28829949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lead uptake by the symbiotic Daucus carota L.-Glomus intraradices system and its effect on the morphology of extra- and intraradical fungal microstructures.
    Alvarado-López CJ; Dasgupta-Schubert N; Ambriz JE; Arteaga-Velazquez JC; Villegas JA
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):381-391. PubMed ID: 30402695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and Intraradical Immobilization of Cadmium by Arbuscular Mycorrhizal Fungi as Revealed by a Stable Isotope Tracer and Synchrotron Radiation μX-Ray Fluorescence Analysis.
    Chen B; Nayuki K; Kuga Y; Zhang X; Wu S; Ohtomo R
    Microbes Environ; 2018 Sep; 33(3):257-263. PubMed ID: 30122692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi.
    Soni SK; Singh R; Awasthi A; Kalra A
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):1971-1979. PubMed ID: 24014225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi.
    Kameoka H; Maeda T; Okuma N; Kawaguchi M
    Plant Cell Physiol; 2019 Oct; 60(10):2272-2281. PubMed ID: 31241164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants.
    Rajtor M; Piotrowska-Seget Z
    Chemosphere; 2016 Nov; 162():105-16. PubMed ID: 27487095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil.
    Schneider J; Labory CR; Rangel WM; Alves E; Guilherme LR
    J Hazard Mater; 2013 Nov; 262():1245-58. PubMed ID: 22704769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil.
    Khan AG
    Environ Int; 2001 May; 26(5-6):417-23. PubMed ID: 11392761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen transfer in the arbuscular mycorrhizal symbiosis.
    Govindarajulu M; Pfeffer PE; Jin H; Abubaker J; Douds DD; Allen JW; Bücking H; Lammers PJ; Shachar-Hill Y
    Nature; 2005 Jun; 435(7043):819-23. PubMed ID: 15944705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arbuscular mycorrhizal fungi-induced tolerance to chromium stress in plants.
    Ahammed GJ; Shamsy R; Liu A; Chen S
    Environ Pollut; 2023 Jun; 327():121597. PubMed ID: 37031849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species.
    Varela-Cervero S; Vasar M; Davison J; Barea JM; Öpik M; Azcón-Aguilar C
    Environ Microbiol; 2015 Aug; 17(8):2882-95. PubMed ID: 25677957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential responses to high soil chromium of two arbuscular mycorrhizal fungi communities isolated from Cr-polluted and non-polluted rhizospheres of Ricinus communis.
    Gil-Cardeza ML; Müller DR; Amaya-Martin SM; Viassolo R; Gómez E
    Sci Total Environ; 2018 Jun; 625():1113-1121. PubMed ID: 29996408
    [No Abstract]   [Full Text] [Related]  

  • 16. A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment.
    Maldonado-Mendoza IE; Dewbre GR; Harrison MJ
    Mol Plant Microbe Interact; 2001 Oct; 14(10):1140-8. PubMed ID: 11605953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization.
    Li J; Sun Y; Zhang X; Hu Y; Li T; Zhang X; Wang Z; Wu S; Wu Z; Chen B
    Chemosphere; 2018 Oct; 209():392-400. PubMed ID: 29935468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arbuscular mycorrhizal fungi serve as keystone taxa for revegetation on the Tibetan Plateau.
    Qin M; Shi G; Zhang Q; Meng Y; Liu Y; Pan J; Jiang S; Zhou G; Feng H
    J Basic Microbiol; 2019 Jun; 59(6):609-620. PubMed ID: 30980724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.
    Wang F; Liu X; Shi Z; Tong R; Adams CA; Shi X
    Chemosphere; 2016 Mar; 147():88-97. PubMed ID: 26761602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with Bacillus thuringiensis toxin genes.
    Cheeke TE; Schütte UM; Hemmerich CM; Cruzan MB; Rosenstiel TN; Bever JD
    Mol Ecol; 2015 May; 24(10):2580-93. PubMed ID: 25827202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.