These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 26552051)
1. Comparison of the Impact of Zinc Vacancies on Charge Separation and Charge Transfer at ZnO/Sexithienyl and ZnO/Fullerene Interfaces. Li H; Bredas JL Adv Mater; 2016 May; 28(20):3928-36. PubMed ID: 26552051 [TBL] [Abstract][Full Text] [Related]
2. Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study. Flores EM; Gouvea RA; Piotrowski MJ; Moreira ML Phys Chem Chem Phys; 2018 Feb; 20(7):4953-4961. PubMed ID: 29387858 [TBL] [Abstract][Full Text] [Related]
3. Potassium-Presenting Zinc Oxide Surfaces Induce Vertical Phase Separation in Fullerene-Free Organic Photovoltaics. Cheng HW; Raghunath P; Wang KL; Cheng P; Haung T; Wu Q; Yuan J; Lin YC; Wang HC; Zou Y; Wang ZK; Lin MC; Wei KH; Yang Y Nano Lett; 2020 Jan; 20(1):715-721. PubMed ID: 31870153 [TBL] [Abstract][Full Text] [Related]
4. Role of the Metal-Oxide Work Function on Photocurrent Generation in Hybrid Solar Cells. Thu C; Ehrenreich P; Wong KK; Zimmermann E; Dorman J; Wang W; Fakharuddin A; Putnik M; Drivas C; Koutsoubelitis A; Vasilopoulou M; Palilis LC; Kennou S; Kalb J; Pfadler T; Schmidt-Mende L Sci Rep; 2018 Feb; 8(1):3559. PubMed ID: 29476065 [TBL] [Abstract][Full Text] [Related]
5. Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods. Scholz R; Luschtinetz R; Seifert G; Jägeler-Hoheisel T; Körner C; Leo K; Rapacioli M J Phys Condens Matter; 2013 Nov; 25(47):473201. PubMed ID: 24135026 [TBL] [Abstract][Full Text] [Related]
6. Huge suppression of charge recombination in P3HT-ZnO organic-inorganic hybrid solar cells by locating dyes at the ZnO/P3HT interfaces. Shen Q; Ogomi Y; Das SK; Pandey SS; Yoshino K; Katayama K; Momose H; Toyoda T; Hayase S Phys Chem Chem Phys; 2013 Sep; 15(34):14370-6. PubMed ID: 23877400 [TBL] [Abstract][Full Text] [Related]
7. Oxygen Vacancies in ZnO Nanosheets Enhance CO Geng Z; Kong X; Chen W; Su H; Liu Y; Cai F; Wang G; Zeng J Angew Chem Int Ed Engl; 2018 May; 57(21):6054-6059. PubMed ID: 29645366 [TBL] [Abstract][Full Text] [Related]
8. Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation. Wang Z; Zong X; Gao Y; Han J; Xu Z; Li Z; Ding C; Wang S; Li C ACS Appl Mater Interfaces; 2017 Sep; 9(36):30696-30702. PubMed ID: 28832111 [TBL] [Abstract][Full Text] [Related]
9. Nonadiabatic Exciton and Charge Separation Dynamics at Interfaces of Zinc Phthalocyanine and Fullerene: Orientation Does Matter. Liu XY; Li ZW; Fang WH; Cui G J Phys Chem A; 2020 Sep; 124(37):7388-7398. PubMed ID: 32853524 [TBL] [Abstract][Full Text] [Related]
10. External electric field-dependent photoinduced charge transfer in non-fullerene organic solar cells. Wang X; Wang H; Zhang M; Pullerits T; Song P Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121763. PubMed ID: 36063736 [TBL] [Abstract][Full Text] [Related]
11. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations. Wu G; Li Z; Zhang X; Lu G J Phys Chem Lett; 2014 Aug; 5(15):2649-56. PubMed ID: 26277958 [TBL] [Abstract][Full Text] [Related]
12. Polarization Energies at Organic-Organic Interfaces: Impact on the Charge Separation Barrier at Donor-Acceptor Interfaces in Organic Solar Cells. Ryno SM; Fu YT; Risko C; Brédas JL ACS Appl Mater Interfaces; 2016 Jun; 8(24):15524-34. PubMed ID: 27244215 [TBL] [Abstract][Full Text] [Related]
13. Effect of static external electric field on bulk and interfaces in organic solar cell systems: A density-functional-theory-based study. Rana D; Materny A Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119565. PubMed ID: 33631630 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells. Zhan L; Li S; Zhang S; Chen X; Lau TK; Lu X; Shi M; Li CZ; Chen H ACS Appl Mater Interfaces; 2018 Dec; 10(49):42444-42452. PubMed ID: 30444596 [TBL] [Abstract][Full Text] [Related]
15. Probing charge transfer states at organic and hybrid internal interfaces by photothermal deflection spectroscopy. Becker-Koch D; Rivkin B; Paulus F; Xiang H; Dong Y; Chen Z; Bakulin AA; Vaynzof Y J Phys Condens Matter; 2019 Mar; 31(12):124001. PubMed ID: 30572317 [TBL] [Abstract][Full Text] [Related]
16. Fractional and Integer Charge Transfer at Semiconductor/Organic Interfaces: The Role of Hybridization and Metallicity. Erker S; Hofmann OT J Phys Chem Lett; 2019 Feb; 10(4):848-854. PubMed ID: 30732451 [TBL] [Abstract][Full Text] [Related]
17. Effects of the electric field on the properties of ZnO-graphene composites: a density functional theory study. Geng W; Zhao X; Zan W; Liu H; Yao X Phys Chem Chem Phys; 2014 Feb; 16(8):3542-8. PubMed ID: 24285715 [TBL] [Abstract][Full Text] [Related]
18. Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO. Agoston P; Albe K; Nieminen RM; Puska MJ Phys Rev Lett; 2009 Dec; 103(24):245501. PubMed ID: 20366209 [TBL] [Abstract][Full Text] [Related]
19. Graphene Field-Effect Transistor as a High-Throughput Platform to Probe Charge Separation at Donor-Acceptor Interfaces. Kattel B; Qin L; Kafle TR; Chan WL J Phys Chem Lett; 2018 Apr; 9(7):1633-1641. PubMed ID: 29533640 [TBL] [Abstract][Full Text] [Related]
20. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Zhong Y; Trinh MT; Chen R; Purdum GE; Khlyabich PP; Sezen M; Oh S; Zhu H; Fowler B; Zhang B; Wang W; Nam CY; Sfeir MY; Black CT; Steigerwald ML; Loo YL; Ng F; Zhu XY; Nuckolls C Nat Commun; 2015 Sep; 6():8242. PubMed ID: 26382113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]