These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Divergence in Photoperiod Responses of a Classical Biological Control Agent, Galerucella calmariensis (Coleoptera: Chrysomelidae), Across a Climatic and Latitudinal Gradient. Wepprich T; Grevstad FS Environ Entomol; 2021 Apr; 50(2):306-316. PubMed ID: 33346818 [TBL] [Abstract][Full Text] [Related]
4. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes. Jones NT; Gilbert B J Anim Ecol; 2016 Mar; 85(2):559-69. PubMed ID: 26590065 [TBL] [Abstract][Full Text] [Related]
5. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L.). Stoeckli S; Hirschi M; Spirig C; Calanca P; Rotach MW; Samietz J PLoS One; 2012; 7(4):e35723. PubMed ID: 22539997 [TBL] [Abstract][Full Text] [Related]
6. Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly. Lindestad O; Wheat CW; Nylin S; Gotthard K Ecology; 2019 Jan; 100(1):e02550. PubMed ID: 30375642 [TBL] [Abstract][Full Text] [Related]
7. Three-year lifecycle, large body, and very high threshold temperature in the cricket Gryllus argenteus for special adaptation to desiccation cycle in Malawi. Kosumi T; Takeda M Naturwissenschaften; 2017 Aug; 104(9-10):70. PubMed ID: 28791459 [TBL] [Abstract][Full Text] [Related]
8. Spatial and temporal shifts in photoperiod with climate change. Ettinger AK; Buonaiuto DM; Chamberlain CJ; Morales-Castilla I; Wolkovich EM New Phytol; 2021 Apr; 230(2):462-474. PubMed ID: 33421152 [TBL] [Abstract][Full Text] [Related]
9. Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata). Lehmann P; Lyytinen A; Piiroinen S; Lindström L Oecologia; 2014 Sep; 176(1):57-68. PubMed ID: 25012598 [TBL] [Abstract][Full Text] [Related]
10. A Variable-Instar Climate-Driven Individual Beetle-Based Phenology Model for the Invasive Asian Longhorned Beetle (Coleoptera: Cerambycidae). Trotter RT; Keena MA Environ Entomol; 2016 Dec; 45(6):1360-1370. PubMed ID: 28028082 [TBL] [Abstract][Full Text] [Related]
11. Climate Change Impacts on the Potential Distribution and Abundance of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) With Special Reference to North America and Europe. Kistner EJ Environ Entomol; 2017 Dec; 46(6):1212-1224. PubMed ID: 29069361 [TBL] [Abstract][Full Text] [Related]
12. The Potential Global Distribution and Voltinism of the Japanese Beetle (Coleoptera: Scarabaeidae) Under Current and Future Climates. Kistner-Thomas EJ J Insect Sci; 2019 Mar; 19(2):. PubMed ID: 30900722 [TBL] [Abstract][Full Text] [Related]
13. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameter-growth cessation in coast Douglas-fir. Ford KR; Harrington CA; St Clair JB Glob Chang Biol; 2017 Aug; 23(8):3348-3362. PubMed ID: 28303652 [TBL] [Abstract][Full Text] [Related]
14. Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change. Valtonen A; Ayres MP; Roininen H; Pöyry J; Leinonen R Oecologia; 2011 Jan; 165(1):237-48. PubMed ID: 20882390 [TBL] [Abstract][Full Text] [Related]
15. Insect overwintering in a changing climate. Bale JS; Hayward SA J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123 [TBL] [Abstract][Full Text] [Related]
16. Population dependent effects of photoperiod on diapause related physiological traits in an invasive beetle (Leptinotarsa decemlineata). Lehmann P; Lyytinen A; Sinisalo T; Lindström L J Insect Physiol; 2012 Aug; 58(8):1146-58. PubMed ID: 22705255 [TBL] [Abstract][Full Text] [Related]
17. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.). Dalin P; Bean DW; Dudley TL; Carney VA; Eberts D; Gardner KT; Hebertson E; Jones EN; Kazmer DJ; Michels GJ; O'Meara SA; Thompson DC Environ Entomol; 2010 Oct; 39(5):1666-75. PubMed ID: 22546466 [TBL] [Abstract][Full Text] [Related]
18. Critical Photoperiod and Its Potential to Predict Mosquito Distributions and Control Medically Important Pests. Peffers CS; Pomeroy LW; Meuti ME J Med Entomol; 2021 Jul; 58(4):1610-1618. PubMed ID: 33835160 [TBL] [Abstract][Full Text] [Related]
19. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs. Primack RB; Laube J; Gallinat AS; Menzel A Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135 [TBL] [Abstract][Full Text] [Related]
20. Evolution of butterfly seasonal plasticity driven by climate change varies across life stages. Nielsen ME; Nylin S; Wiklund C; Gotthard K Ecol Lett; 2023 Sep; 26(9):1548-1558. PubMed ID: 37366181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]