These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 26552260)
21. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Hamilton JA; El Kayal W; Hart AT; Runcie DE; Arango-Velez A; Cooke JE Tree Physiol; 2016 Nov; 36(11):1432-1448. PubMed ID: 27449791 [TBL] [Abstract][Full Text] [Related]
22. Spatial variability in herbaceous plant phenology is mostly explained by variability in temperature but also by photoperiod and functional traits. Rauschkolb R; Bucher SF; Hensen I; Ahrends A; Fernández-Pascual E; Heubach K; Jakubka D; Jiménez-Alfaro B; König A; Koubek T; Kehl A; Khuroo AA; Lindstädter A; Shafee F; Mašková T; Platonova E; Panico P; Plos C; Primack R; Rosche C; Shah MA; Sporbert M; Stevens AD; Tarquini F; Tielbörger K; Träger S; Vange V; Weigelt P; Bonn A; Freiberg M; Knickmann B; Nordt B; Wirth C; Römermann C Int J Biometeorol; 2024 Apr; 68(4):761-775. PubMed ID: 38285109 [TBL] [Abstract][Full Text] [Related]
23. Explaining the sawtooth: latitudinal periodicity in a circadian gene correlates with shifts in generation number. Levy RC; Kozak GM; Wadsworth CB; Coates BS; Dopman EB J Evol Biol; 2015 Jan; 28(1):40-53. PubMed ID: 25430782 [TBL] [Abstract][Full Text] [Related]
24. Genetic response to rapid climate change: it's seasonal timing that matters. Bradshaw WE; Holzapfel CM Mol Ecol; 2008 Jan; 17(1):157-66. PubMed ID: 17850269 [TBL] [Abstract][Full Text] [Related]
25. Population-specific effects of temperature and photoperiod on development and body mass in Cassida vibex (Coleoptera: Chrysomelidae). Kutcherov D; Lopatina EB Insect Sci; 2023 Dec; 30(6):1810-1826. PubMed ID: 36773300 [TBL] [Abstract][Full Text] [Related]
26. Developmental trap or demographic bonanza? Opposing consequences of earlier phenology in a changing climate for a multivoltine butterfly. Kerr NZ; Wepprich T; Grevstad FS; Dopman EB; Chew FS; Crone EE Glob Chang Biol; 2020 Apr; 26(4):2014-2027. PubMed ID: 31833162 [TBL] [Abstract][Full Text] [Related]
27. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change. Bestion E; Teyssier A; Richard M; Clobert J; Cote J PLoS Biol; 2015 Oct; 13(10):e1002281. PubMed ID: 26501958 [TBL] [Abstract][Full Text] [Related]
28. Will phenotypic plasticity affecting flowering phenology keep pace with climate change? Richardson BA; Chaney L; Shaw NL; Still SM Glob Chang Biol; 2017 Jun; 23(6):2499-2508. PubMed ID: 27739159 [TBL] [Abstract][Full Text] [Related]
29. Diapause and overwintering of two spruce bark beetle species. Schebeck M; Hansen EM; Schopf A; Ragland GJ; Stauffer C; Bentz BJ Physiol Entomol; 2017 Sep; 42(3):200-210. PubMed ID: 28979060 [TBL] [Abstract][Full Text] [Related]
30. Evolutionary Shift of Insect Diapause Strategy in a Warming Climate: An Intra-Population Evidence from Asian Corn Borer. Wang L; Liu K; Zhao X; Zhang T; Yuan M; He K Biology (Basel); 2023 May; 12(6):. PubMed ID: 37372047 [TBL] [Abstract][Full Text] [Related]
31. Management Implications for the Nantucket Pine Tip Moth From Temperature-Induced Shifts in Phenology and Voltinism Attributed to Climate Change. Cassidy VA; Asaro C; McCarty EP J Econ Entomol; 2022 Oct; 115(5):1331-1341. PubMed ID: 35552738 [TBL] [Abstract][Full Text] [Related]
32. The hotter the better? Climate change and voltinism of Spodoptera eridania estimated with different methods. Sampaio F; Krechemer FS; Marchioro CA J Therm Biol; 2021 May; 98():102946. PubMed ID: 34016363 [TBL] [Abstract][Full Text] [Related]
33. Exploring the universal ecological responses to climate change in a univoltine butterfly. Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243 [TBL] [Abstract][Full Text] [Related]
35. Climate change and the flowering time of annual crops. Craufurd PQ; Wheeler TR J Exp Bot; 2009; 60(9):2529-39. PubMed ID: 19505929 [TBL] [Abstract][Full Text] [Related]
36. Seasonal timing of diapause induction limits the effective range of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarix spp.). Bean DW; Dudley TL; Keller JC Environ Entomol; 2007 Feb; 36(1):15-25. PubMed ID: 17349111 [TBL] [Abstract][Full Text] [Related]
37. Beyond seasonal climate: statistical estimation of phenological responses to weather. Diez JM; Ibáñez I; Silander JA; Primack R; Higuchi H; Kobori H; Sen A; James TY Ecol Appl; 2014; 24(7):1793-802. PubMed ID: 29210238 [TBL] [Abstract][Full Text] [Related]
38. Climate effects on late-season flight times of Massachusetts butterflies. Zipf L; Williams EH; Primack RB; Stichter S Int J Biometeorol; 2017 Sep; 61(9):1667-1673. PubMed ID: 28382376 [TBL] [Abstract][Full Text] [Related]
39. Temperature has an overriding role compared to photoperiod in regulating the seasonal timing of winter moth egg hatching. van Dis NE; Salis L; Visser ME Oecologia; 2024 Apr; 204(4):743-750. PubMed ID: 38521882 [TBL] [Abstract][Full Text] [Related]
40. Climatic warming increases voltinism in European butterflies and moths. Altermatt F Proc Biol Sci; 2010 Apr; 277(1685):1281-7. PubMed ID: 20031988 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]