BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26552379)

  • 21. Prey body mass and richness underlie the persistence of a top predator.
    Guzman LM; Srivastava DS
    Proc Biol Sci; 2019 May; 286(1902):20190622. PubMed ID: 31064301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predator traits determine food-web architecture across ecosystems.
    Brose U; Archambault P; Barnes AD; Bersier LF; Boy T; Canning-Clode J; Conti E; Dias M; Digel C; Dissanayake A; Flores AAV; Fussmann K; Gauzens B; Gray C; Häussler J; Hirt MR; Jacob U; Jochum M; Kéfi S; McLaughlin O; MacPherson MM; Latz E; Layer-Dobra K; Legagneux P; Li Y; Madeira C; Martinez ND; Mendonça V; Mulder C; Navarrete SA; O'Gorman EJ; Ott D; Paula J; Perkins D; Piechnik D; Pokrovsky I; Raffaelli D; Rall BC; Rosenbaum B; Ryser R; Silva A; Sohlström EH; Sokolova N; Thompson MSA; Thompson RM; Vermandele F; Vinagre C; Wang S; Wefer JM; Williams RJ; Wieters E; Woodward G; Iles AC
    Nat Ecol Evol; 2019 Jun; 3(6):919-927. PubMed ID: 31110252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revisiting the role of individual variability in population persistence and stability.
    Morozov A; Pasternak AF; Arashkevich EG
    PLoS One; 2013; 8(8):e70576. PubMed ID: 23936450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.
    Green SJ; Côté IM
    J Anim Ecol; 2014 Nov; 83(6):1451-60. PubMed ID: 24861366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response.
    Miller JR; Ament JM; Schmitz OJ
    J Anim Ecol; 2014 Jan; 83(1):214-22. PubMed ID: 24028410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenotypic variation explains food web structural patterns.
    Gibert JP; DeLong JP
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11187-11192. PubMed ID: 28973955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predator-prey size relationships in an African large-mammal food web.
    Owen-Smith N; Mills MG
    J Anim Ecol; 2008 Jan; 77(1):173-83. PubMed ID: 18177336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predator size and phenology shape prey survival in temporary ponds.
    Urban MC
    Oecologia; 2007 Dec; 154(3):571-80. PubMed ID: 17891545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attack or attacked: the sensory and fluid mechanical constraints of copepods' predator-prey interactions.
    Kiørboe T
    Integr Comp Biol; 2013 Nov; 53(5):821-31. PubMed ID: 23613321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions.
    Majdi N; Boiché A; Traunspurger W; Lecerf A
    J Anim Ecol; 2014 Jul; 83(4):953-62. PubMed ID: 24286440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonadditive impacts of temperature and basal resource availability on predator-prey interactions and phenotypes.
    Costa ZJ; Kishida O
    Oecologia; 2015 Aug; 178(4):1215-25. PubMed ID: 25820751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward a community ecology of landscapes: predicting multiple predator-prey interactions across geographic space.
    Schmitz OJ; Miller JRB; Trainor AM; Abrahms B
    Ecology; 2017 Sep; 98(9):2281-2292. PubMed ID: 28585719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consumer-resource body-size relationships in natural food webs.
    Brose U; Jonsson T; Berlow EL; Warren P; Banasek-Richter C; Bersier LF; Blanchard JL; Brey T; Carpenter SR; Blandenier MF; Cushing L; Dawah HA; Dell T; Edwards F; Harper-Smith S; Jacob U; Ledger ME; Martinez ND; Memmott J; Mintenbeck K; Pinnegar JK; Rall BC; Rayner TS; Reuman DC; Ruess L; Ulrich W; Williams RJ; Woodward G; Cohen JE
    Ecology; 2006 Oct; 87(10):2411-7. PubMed ID: 17089649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting the Signature of Body Mass Evolution in the Broad-Scale Architecture of Food Webs.
    DeLong JP
    Am Nat; 2020 Oct; 196(4):443-453. PubMed ID: 32970468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plankton predation rates in turbulence: a study of the limitations imposed on a predator with a non-spherical field of sensory perception.
    Lewis DM; Bala SI
    J Theor Biol; 2006 Sep; 242(1):44-61. PubMed ID: 16542686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directional Hydrodynamic Sensing by Free-Swimming Organisms.
    Takagi D; Hartline DK
    Bull Math Biol; 2018 Jan; 80(1):215-227. PubMed ID: 29192370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions.
    Schmitz O
    F1000Res; 2017; 6():1767. PubMed ID: 29043073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive changes in prey vulnerability shape the response of predator populations to mortality.
    Abrams PA
    J Theor Biol; 2009 Nov; 261(2):294-304. PubMed ID: 19643111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cascading top-down effects of changing oceanic predator abundances.
    Baum JK; Worm B
    J Anim Ecol; 2009 Jul; 78(4):699-714. PubMed ID: 19298616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foraging theory predicts predator-prey energy fluxes.
    Brose U; Ehnes RB; Rall BC; Vucic-Pestic O; Berlow EL; Scheu S
    J Anim Ecol; 2008 Sep; 77(5):1072-8. PubMed ID: 18540967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.