BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 26552868)

  • 1. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining phylogenetic footprinting with motif models incorporating intra-motif dependencies.
    Nettling M; Treutler H; Cerquides J; Grosse I
    BMC Bioinformatics; 2017 Mar; 18(1):141. PubMed ID: 28249564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the value of intra-motif dependencies of human insulator protein CTCF.
    Eggeling R; Gohr A; Keilwagen J; Mohr M; Posch S; Smith AD; Grosse I
    PLoS One; 2014; 9(1):e85629. PubMed ID: 24465627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences.
    Siebert M; Söding J
    Nucleic Acids Res; 2016 Jul; 44(13):6055-69. PubMed ID: 27288444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
    Omidi S; Zavolan M; Pachkov M; Breda J; Berger S; van Nimwegen E
    PLoS Comput Biol; 2017 Jul; 13(7):e1005176. PubMed ID: 28753602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.
    Zhang Z; Chang CW; Hugo W; Cheung E; Sung WK
    J Comput Biol; 2013 Mar; 20(3):237-48. PubMed ID: 23461573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data.
    Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B
    BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fast Cluster Motif Finding Algorithm for ChIP-Seq Data Sets.
    Zhang Y; Wang P
    Biomed Res Int; 2015; 2015():218068. PubMed ID: 26236718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general approach for discriminative de novo motif discovery from high-throughput data.
    Grau J; Posch S; Grosse I; Keilwagen J
    Nucleic Acids Res; 2013 Nov; 41(21):e197. PubMed ID: 24057214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InMoDe: tools for learning and visualizing intra-motif dependencies of DNA binding sites.
    Eggeling R; Grosse I; Grau J
    Bioinformatics; 2017 Feb; 33(4):580-582. PubMed ID: 28035026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WSMD: weakly-supervised motif discovery in transcription factor ChIP-seq data.
    Zhang H; Zhu L; Huang DS
    Sci Rep; 2017 Jun; 7(1):3217. PubMed ID: 28607381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metamotifs--a generative model for building families of nucleotide position weight matrices.
    Piipari M; Down TA; Hubbard TJ
    BMC Bioinformatics; 2010 Jun; 11():348. PubMed ID: 20579334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FastMotif: spectral sequence motif discovery.
    Colombo N; Vlassis N
    Bioinformatics; 2015 Aug; 31(16):2623-31. PubMed ID: 25886979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.
    Castro-Mondragon JA; Rioualen C; Contreras-Moreira B; van Helden J
    Methods Mol Biol; 2016; 1482():297-322. PubMed ID: 27557775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites.
    Kulakovskiy I; Levitsky V; Oshchepkov D; Bryzgalov L; Vorontsov I; Makeev V
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340004. PubMed ID: 23427986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THiCweed: fast, sensitive detection of sequence features by clustering big datasets.
    Agrawal A; Sambare SV; Narlikar L; Siddharthan R
    Nucleic Acids Res; 2018 Mar; 46(5):e29. PubMed ID: 29267972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable structure motifs for transcription factor binding sites.
    Reid JE; Evans KJ; Dyer N; Wernisch L; Ott S
    BMC Genomics; 2010 Jan; 11():30. PubMed ID: 20074339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Efficient Algorithm for Discovering Motifs in Large DNA Data Sets.
    Yu Q; Huo H; Chen X; Guo H; Vitter JS; Huan J
    IEEE Trans Nanobioscience; 2015 Jul; 14(5):535-44. PubMed ID: 25872217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.
    Vishnevsky OV; Bocharnikov AV; Kolchanov NA
    J Bioinform Comput Biol; 2018 Feb; 16(1):1740012. PubMed ID: 29281953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disentangling transcription factor binding site complexity.
    Eggeling R
    Nucleic Acids Res; 2018 Nov; 46(20):e121. PubMed ID: 30085218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.