BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 26553099)

  • 1. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation.
    Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME
    Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices.
    Xiang N; Ni Z; Yi H
    Electrophoresis; 2018 Jan; 39(2):417-424. PubMed ID: 28990196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma Isolation in a Syringe by Conformal Integration of Inertial Microfluidics.
    Han JY; DeVoe DL
    Ann Biomed Eng; 2021 Jan; 49(1):139-148. PubMed ID: 32367467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics.
    Shen S; Ma C; Zhao L; Wang Y; Wang JC; Xu J; Li T; Pang L; Wang J
    Lab Chip; 2014 Jul; 14(14):2525-38. PubMed ID: 24862501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaled-Up Inertial Microfluidics: Retention System for Microcarrier-Based Suspension Cultures.
    Moloudi R; Oh S; Yang C; Teo KL; Lam AT; Ebrahimi Warkiani M; Win Naing M
    Biotechnol J; 2019 May; 14(5):e1800674. PubMed ID: 30791214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
    Zhou J; Giridhar PV; Kasper S; Papautsky I
    Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A smart pipette for equipment-free separation and delivery of plasma for on-site whole blood analysis.
    Im SB; Kim SC; Shim JS
    Anal Bioanal Chem; 2016 Feb; 408(5):1391-7. PubMed ID: 26718913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Pipette Tip for High-Purity and High-Throughput Blood Plasma Separation from Whole Blood.
    Kim B; Oh S; You D; Choi S
    Anal Chem; 2017 Feb; 89(3):1439-1444. PubMed ID: 28208273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of cancer cells from a red blood cell suspension using inertial force.
    Tanaka T; Ishikawa T; Numayama-Tsuruta K; Imai Y; Ueno H; Matsuki N; Yamaguchi T
    Lab Chip; 2012 Nov; 12(21):4336-43. PubMed ID: 22899210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of leukocytes from blood using spiral channel with trapezoid cross-section.
    Wu L; Guan G; Hou HW; Bhagat AA; Han J
    Anal Chem; 2012 Nov; 84(21):9324-31. PubMed ID: 23025404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.