These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26553112)

  • 21. Generation of α-1,3-Galactosyltransferase-Deficient Porcine Embryonic Fibroblasts by CRISPR/Cas9-Mediated Knock-in of a Small Mutated Sequence and a Targeted Toxin-Based Selection System.
    Sato M; Kagoshima A; Saitoh I; Inada E; Miyoshi K; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Reprod Domest Anim; 2015 Oct; 50(5):872-80. PubMed ID: 26138589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Death receptor-based enrichment of Cas9-expressing cells.
    Liesche C; Venkatraman L; Aschenbrenner S; Grosse S; Grimm D; Eils R; Beaudouin J
    BMC Biotechnol; 2016 Feb; 16():17. PubMed ID: 26883910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts.
    Sato M; Miyoshi K; Nagao Y; Nishi Y; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Xenotransplantation; 2014; 21(3):291-300. PubMed ID: 24919525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes.
    Nakagawa Y; Sakuma T; Sakamoto T; Ohmuraya M; Nakagata N; Yamamoto T
    BMC Biotechnol; 2015 May; 15():33. PubMed ID: 25997509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging Approaches for Spatiotemporal Control of Targeted Genome with Inducible CRISPR-Cas9.
    Nihongaki Y; Otabe T; Sato M
    Anal Chem; 2018 Jan; 90(1):429-439. PubMed ID: 29161010
    [No Abstract]   [Full Text] [Related]  

  • 28. Editing and investigating genomes with TALE and CRISPR/Cas systems: applications of artificial TALE and CRISPR-Cas systems.
    Giovannangeli C; Concordet JP
    Methods; 2014 Sep; 69(2):119-20. PubMed ID: 25248487
    [No Abstract]   [Full Text] [Related]  

  • 29. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9.
    Zhang L; Jia R; Palange NJ; Satheka AC; Togo J; An Y; Humphrey M; Ban L; Ji Y; Jin H; Feng X; Zheng Y
    PLoS One; 2015; 10(3):e0120396. PubMed ID: 25803037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing.
    Bell CC; Magor GW; Gillinder KR; Perkins AC
    BMC Genomics; 2014 Nov; 15(1):1002. PubMed ID: 25409780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice.
    Aida T; Chiyo K; Usami T; Ishikubo H; Imahashi R; Wada Y; Tanaka KF; Sakuma T; Yamamoto T; Tanaka K
    Genome Biol; 2015 Apr; 16(1):87. PubMed ID: 25924609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome Editing Using Mammalian Haploid Cells.
    Horii T; Hatada I
    Int J Mol Sci; 2015 Oct; 16(10):23604-14. PubMed ID: 26437403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. What history tells us XL. The success story of the expression 'genome editing'.
    Morange M
    J Biosci; 2016 Mar; 41(1):9-11. PubMed ID: 26949082
    [No Abstract]   [Full Text] [Related]  

  • 34. Epigenome editing made easy.
    Zentner GE; Henikoff S
    Nat Biotechnol; 2015 Jun; 33(6):606-7. PubMed ID: 26057978
    [No Abstract]   [Full Text] [Related]  

  • 35. CRISPR-Cas9 Based Therapeutics: Not So Fast.
    EBioMedicine; 2015 May; 2(5):365. PubMed ID: 26137576
    [No Abstract]   [Full Text] [Related]  

  • 36. Research of methods to detect genomic mutations induced by CRISPR/Cas systems.
    Wang K; Mei DY; Liu QN; Qiao XH; Ruan WM; Huang T; Cao GS
    J Biotechnol; 2015 Nov; 214():128-32. PubMed ID: 26419205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR germline editing reverberates through biotech industry.
    Sheridan C
    Nat Biotechnol; 2015 May; 33(5):431-2. PubMed ID: 25965729
    [No Abstract]   [Full Text] [Related]  

  • 38. CRISPR/Cas9-mediated genome engineering of the ferret.
    Kou Z; Wu Q; Kou X; Yin C; Wang H; Zuo Z; Zhuo Y; Chen A; Gao S; Wang X
    Cell Res; 2015 Dec; 25(12):1372-5. PubMed ID: 26565559
    [No Abstract]   [Full Text] [Related]  

  • 39. Smash and DASH with Cas9.
    Ramani V; Shendure J
    Genome Biol; 2016 Mar; 17():42. PubMed ID: 26944856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Next-generation genome editing.
    Nat Biotechnol; 2015 May; 33(5):429. PubMed ID: 25965728
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.