BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26553142)

  • 1. Diagnostic yield and accuracy of CT angiography, MR angiography, and digital subtraction angiography for detection of macrovascular causes of intracerebral haemorrhage: prospective, multicentre cohort study.
    van Asch CJ; Velthuis BK; Rinkel GJ; Algra A; de Kort GA; Witkamp TD; de Ridder JC; van Nieuwenhuizen KM; de Leeuw FE; Schonewille WJ; de Kort PL; Dippel DW; Raaymakers TW; Hofmeijer J; Wermer MJ; Kerkhoff H; Jellema K; Bronner IM; Remmers MJ; Bienfait HP; Witjes RJ; Greving JP; Klijn CJ;
    BMJ; 2015 Nov; 351():h5762. PubMed ID: 26553142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The value of magnetic resonance imaging for the detection of the bleeding source in non-traumatic intracerebral haemorrhages: a comparison with conventional digital subtraction angiography.
    Lummel N; Lutz J; Brückmann H; Linn J
    Neuroradiology; 2012 Jul; 54(7):673-80. PubMed ID: 21918851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computed tomography angiography or magnetic resonance angiography for detection of intracranial vascular malformations in patients with intracerebral haemorrhage.
    Josephson CB; White PM; Krishan A; Al-Shahi Salman R
    Cochrane Database Syst Rev; 2014 Sep; 2014(9):CD009372. PubMed ID: 25177839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the presence of macrovascular causes in non-traumatic intracerebral haemorrhage: the DIAGRAM prediction score.
    Hilkens NA; van Asch CJJ; Werring DJ; Wilson D; Rinkel GJE; Algra A; Velthuis BK; de Kort GAP; Witkamp TD; van Nieuwenhuizen KM; de Leeuw FE; Schonewille WJ; de Kort PLM; Dippel DWJ; Raaymakers TWM; Hofmeijer J; Wermer MJH; Kerkhoff H; Jellema K; Bronner IM; Remmers MJM; Bienfait HP; Witjes RJGM; Jäger HR; Greving JP; Klijn CJM;
    J Neurol Neurosurg Psychiatry; 2018 Jul; 89(7):674-679. PubMed ID: 29348301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The predictive value of magnetic resonance imaging in evaluating intracranial arteriovenous malformation obliteration after stereotactic radiosurgery.
    Lee CC; Reardon MA; Ball BZ; Chen CJ; Yen CP; Xu Z; Wintermark M; Sheehan J
    J Neurosurg; 2015 Jul; 123(1):136-44. PubMed ID: 25839923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the diagnostic accuracy of 3D contrast-enhanced magnetic resonance angiography versus digital subtraction angiography in spinal dural arteriovenous fistulas.
    Khalafallah AM; Yunga Tigre J; Rady N; Starke RM; Saraf-Lavi E; Levi AD
    Neurosurg Focus; 2024 Mar; 56(3):E10. PubMed ID: 38428010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparisons of DSA and MR angiography with digital subtraction angiography in 151 patients with subacute spontaneous intracerebral hemorrhage.
    Wong GK; Siu DY; Ahuja AT; King AD; Yu SC; Zhu XL; Poon WS
    J Clin Neurosci; 2010 May; 17(5):601-5. PubMed ID: 20227278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic performance of dynamic 3D magnetic resonance angiography in daily practice for the detection of intracranial arteriovenous shunts in patients with non-traumatic intracranial hemorrhage.
    Roumi A; Ben Hassen W; Hmeydia G; Posener S; Pallud J; Sharshar T; Calvet D; Mas JL; Baron JC; Oppenheim C; Naggara O; Turc G
    Front Neurol; 2022; 13():1085806. PubMed ID: 36776575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stenosis detection in failing hemodialysis access fistulas and grafts: comparison of color Doppler ultrasonography, contrast-enhanced magnetic resonance angiography, and digital subtraction angiography.
    Doelman C; Duijm LE; Liem YS; Froger CL; Tielbeek AV; Donkers-van Rossum AB; Cuypers PW; Douwes-Draaijer P; Buth J; van den Bosch HC
    J Vasc Surg; 2005 Oct; 42(4):739-46. PubMed ID: 16242563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is four-dimensional CT angiography as effective as digital subtraction angiography in the detection of the underlying causes of intracerebral haemorrhage: a systematic review.
    Denby CE; Chatterjee K; Pullicino R; Lane S; Radon MR; Das KV
    Neuroradiology; 2020 Mar; 62(3):273-281. PubMed ID: 31901972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging as a single diagnostic tool for verifying radiosurgery outcomes of cavernous sinus dural arteriovenous fistula.
    Hu YS; Guo WY; Lin CJ; Wu HM; Luo CB; Wu CA; Lee CC; Yang HC; Liu KD; Chung WY
    Eur J Radiol; 2020 Apr; 125():108866. PubMed ID: 32065928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-line investigation of acute intracerebral hemorrhage using dynamic magnetic resonance angiography.
    Evans AL; Coley SC; Wilkinson ID; Griffiths PD
    Acta Radiol; 2005 Oct; 46(6):625-30. PubMed ID: 16334846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic contrast-enhanced magnetic resonance angiography for the localization of spinal dural arteriovenous fistulas at 3T.
    Zhou G; Li MH; Lu C; Yin YL; Zhu YQ; Wei XE; Lu HT; Zheng QQ; Gao WW
    J Neuroradiol; 2017 Feb; 44(1):17-23. PubMed ID: 27814888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRA versus digital subtraction angiography in acute subarachnoid haemorrhage: a blinded multireader study of prospectively recruited patients.
    Jäger HR; Mansmann U; Hausmann O; Partzsch U; Moseley IF; Taylor WJ
    Neuroradiology; 2000 May; 42(5):313-26. PubMed ID: 10872150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution 3D volumetric contrast-enhanced MR angiography with a blood pool agent (ferumoxytol) for diagnostic evaluation of pediatric brain arteriovenous malformations.
    Iv M; Choudhri O; Dodd RL; Vasanawala SS; Alley MT; Moseley M; Holdsworth SJ; Grant G; Cheshier S; Yeom KW
    J Neurosurg Pediatr; 2018 Sep; 22(3):251-260. PubMed ID: 29882734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral arteriovenous malformations at 3.0 T: intraindividual comparative study of 4D-MRA in combination with selective arterial spin labeling and digital subtraction angiography.
    Kukuk GM; Hadizadeh DR; Boström A; Gieseke J; Bergener J; Nelles M; Mürtz P; Urbach H; Schild HH; Willinek WA
    Invest Radiol; 2010 Mar; 45(3):126-32. PubMed ID: 20065859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance angiography or digital subtraction catheter angiography for follow-up of coiled aneurysms: do we need both?
    Lane A; Vivian P; Coulthard A
    J Med Imaging Radiat Oncol; 2015 Apr; 59(2):163-9. PubMed ID: 25857748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified magnetic resonance angiography of the liver using sensitivity encoding in comparison with digital subtraction angiography and CT arterial portography.
    Yan SX; Liang TB; Fujii M; Kawamitsu H; Sugimura K; Zheng SS
    Hepatobiliary Pancreat Dis Int; 2005 May; 4(2):185-91. PubMed ID: 15908313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The accuracy and utility of contrast-enhanced MR angiography for localization of spinal dural arteriovenous fistulas: the Toronto experience.
    Lindenholz A; TerBrugge KG; van Dijk JM; Farb RI
    Eur Radiol; 2014 Nov; 24(11):2885-94. PubMed ID: 25015136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Added diagnostic values of three-dimensional high-resolution proton density-weighted magnetic resonance imaging for unruptured intracranial aneurysms in the circle-of-Willis: Comparison with time-of-flight magnetic resonance angiography.
    Yim Y; Jung SC; Kim JY; Kim SO; Kim BJ; Lee DH; Park W; Park JC; Ahn JS
    PLoS One; 2020; 15(12):e0243235. PubMed ID: 33270756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.