These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 26553245)

  • 1. Transport properties of track-etched membranes having variable effective pore-lengths.
    Nguyen QH; Ali M; Nasir S; Ensinger W
    Nanotechnology; 2015 Dec; 26(48):485502. PubMed ID: 26553245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conical nanopore membranes. Preparation and transport properties.
    Li N; Yu S; Harrell CC; Martin CR
    Anal Chem; 2004 Apr; 76(7):2025-30. PubMed ID: 15053667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale simulations of biomolecular transport through nanofilters with tapered and cylindrical geometries.
    Ileri N; Létant SE; Palazoglu A; Stroeve P; Tringe JW; Faller R
    Phys Chem Chem Phys; 2012 Nov; 14(43):15066-77. PubMed ID: 23034638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes.
    Nasir S; Ali M; Ensinger W
    Nanotechnology; 2012 Jun; 23(22):225502. PubMed ID: 22572395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slit pores preferred over cylindrical pores for high selectivity in biomolecular filtration.
    Feinberg BJ; Hsiao JC; Park J; Zydney AL; Fissell WH; Roy S
    J Colloid Interface Sci; 2018 May; 517():176-181. PubMed ID: 29425954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic Effects in Track-Etched Nanopores.
    Apel PY; Blonskaya IV; Lizunov NE; Olejniczak K; Orelovitch OL; Toimil-Molares ME; Trautmann C
    Small; 2018 May; 14(18):e1703327. PubMed ID: 29573553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of ions using polyelectrolyte-modified nanoporous track-etched membranes.
    Armstrong JA; Bernal EE; Yaroshchuk A; Bruening ML
    Langmuir; 2013 Aug; 29(32):10287-96. PubMed ID: 23902372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of water molecules through noncylindrical pores in multilayer nanoporous graphene.
    Shahbabaei M; Kim D
    Phys Chem Chem Phys; 2017 Aug; 19(31):20749-20759. PubMed ID: 28740979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shedding light on the mechanism of asymmetric track etching: an interplay between latent track structure, etchant diffusion and osmotic flow.
    Apel PY; Bashevoy VV; Blonskaya IV; Lizunov NE; Orelovitch OL; Trautmann C
    Phys Chem Chem Phys; 2016 Sep; 18(36):25421-25433. PubMed ID: 27722562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements.
    Apel PY; Blonskaya IV; Orelovitch OL; Sartowska BA; Spohr R
    Nanotechnology; 2012 Jun; 23(22):225503. PubMed ID: 22572471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes.
    Wang C; Wang L; Zhu X; Wang Y; Xue J
    Lab Chip; 2012 May; 12(9):1710-6. PubMed ID: 22441654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate characterization of single track-etched, conical nanopores.
    Apel PY; Ramirez P; Blonskaya IV; Orelovitch OL; Sartowska BA
    Phys Chem Chem Phys; 2014 Aug; 16(29):15214-23. PubMed ID: 24939748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic voltammetry on recessed nanodisk-array electrodes prepared from track-etched polycarbonate membranes with 10-nm diameter pores.
    Perera DM; Ito T
    Analyst; 2010 Jan; 135(1):172-6. PubMed ID: 20024198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.
    Zharov I; Khabibullin A
    Acc Chem Res; 2014 Feb; 47(2):440-9. PubMed ID: 24397245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of controlled laser microporation on drug transport kinetics into and across the skin.
    Bachhav YG; Summer S; Heinrich A; Bragagna T; Böhler C; Kalia YN
    J Control Release; 2010 Aug; 146(1):31-6. PubMed ID: 20678988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction.
    Coceancigh H; Tran-Ba KH; Siepser N; Baker LA; Ito T
    Langmuir; 2017 Oct; 33(43):11998-12006. PubMed ID: 28954196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical and other transport properties of nanoporous track-etched membranes studied by the current switch-off technique.
    Yaroshchuk A; Zhukova O; Ulbricht M; Ribitsch V
    Langmuir; 2005 Jul; 21(15):6872-82. PubMed ID: 16008399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.