BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 26553345)

  • 1. Benzoxazepines Achieve Potent Suppression of IL-17 Release in Human T-Helper 17 (TH 17) Cells through an Induced-Fit Binding Mode to the Nuclear Receptor RORγ.
    Olsson RI; Xue Y; von Berg S; Aagaard A; McPheat J; Hansson EL; Bernström J; Hansson P; Jirholt J; Grindebacke H; Leffler A; Chen R; Xiong Y; Ge H; Hansson TG; Narjes F
    ChemMedChem; 2016 Jan; 11(2):207-16. PubMed ID: 26553345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potent and Orally Bioavailable Inverse Agonists of RORγt Resulting from Structure-Based Design.
    Narjes F; Xue Y; von Berg S; Malmberg J; Llinas A; Olsson RI; Jirholt J; Grindebacke H; Leffler A; Hossain N; Lepistö M; Thunberg L; Leek H; Aagaard A; McPheat J; Hansson EL; Bäck E; Tångefjord S; Chen R; Xiong Y; Hongbin G; Hansson TG
    J Med Chem; 2018 Sep; 61(17):7796-7813. PubMed ID: 30095900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of novel pyrazole-containing benzamides as potent RORγ inverse agonists.
    Wang T; Banerjee D; Bohnert T; Chao J; Enyedy I; Fontenot J; Guertin K; Jones H; Lin EY; Marcotte D; Talreja T; Van Vloten K
    Bioorg Med Chem Lett; 2015 Aug; 25(15):2985-90. PubMed ID: 26048789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cardenolides strophanthidin, digoxigenin and dihydroouabain act as activators of the human RORγ/RORγT receptors.
    Karaś K; Sałkowska A; Walczak-Drzewiecka A; Ryba K; Dastych J; Bachorz RA; Ratajewski M
    Toxicol Lett; 2018 Oct; 295():314-324. PubMed ID: 29981919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of a potent orally bioavailable retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitor, S18-000003.
    Sasaki Y; Odan M; Yamamoto S; Kida S; Ueyama A; Shimizu M; Haruna T; Watanabe A; Okuno T
    Bioorg Med Chem Lett; 2018 Dec; 28(22):3549-3553. PubMed ID: 30301676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of 1-{4-[3-fluoro-4-((3s,6r)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone (GNE-3500): a potent, selective, and orally bioavailable retinoic acid receptor-related orphan receptor C (RORc or RORγ) inverse agonist.
    Fauber BP; René O; Deng Y; DeVoss J; Eidenschenk C; Everett C; Ganguli A; Gobbi A; Hawkins J; Johnson AR; La H; Lesch J; Lockey P; Norman M; Ouyang W; Summerhill S; Wong H
    J Med Chem; 2015 Jul; 58(13):5308-22. PubMed ID: 26061388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ternary crystal structure of human RORγ ligand-binding-domain, an inhibitor and corepressor peptide provides a new insight into corepressor interaction.
    Noguchi M; Nomura A; Doi S; Yamaguchi K; Hirata K; Shiozaki M; Maeda K; Hirashima S; Kotoku M; Yamaguchi T; Katsuda Y; Crowe P; Tao H; Thacher S; Adachi T
    Sci Rep; 2018 Nov; 8(1):17374. PubMed ID: 30478402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress on nuclear receptor RORγ modulators.
    Cyr P; Bronner SM; Crawford JJ
    Bioorg Med Chem Lett; 2016 Sep; 26(18):4387-4393. PubMed ID: 27542308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ternary complex of human RORγ ligand-binding domain, inverse agonist and SMRT peptide shows a unique mechanism of corepressor recruitment.
    Noguchi M; Nomura A; Murase K; Doi S; Yamaguchi K; Hirata K; Shiozaki M; Hirashima S; Kotoku M; Yamaguchi T; Katsuda Y; Steensma R; Li X; Tao H; Tse B; Fenn M; Babine R; Bradley E; Crowe P; Thacher S; Adachi T; Kamada M
    Genes Cells; 2017 Jun; 22(6):535-551. PubMed ID: 28493531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ.
    Kojima H; Takeda Y; Muromoto R; Takahashi M; Hirao T; Takeuchi S; Jetten AM; Matsuda T
    Toxicology; 2015 Mar; 329():32-9. PubMed ID: 25583575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of N-phenyl-2-(N-phenylphenylsulfonamido)acetamides as new RORγ inverse agonists: Virtual screening, structure-based optimization, and biological evaluation.
    Song Y; Xue X; Wu X; Wang R; Xing Y; Yan W; Zhou Y; Qian CN; Zhang Y; Xu Y
    Eur J Med Chem; 2016 Jun; 116():13-26. PubMed ID: 27043267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small molecule mediated inhibition of RORγ-dependent gene expression and autoimmune disease pathology in vivo.
    Banerjee D; Zhao L; Wu L; Palanichamy A; Ergun A; Peng L; Quigley C; Hamann S; Dunstan R; Cullen P; Allaire N; Guertin K; Wang T; Chao J; Loh C; Fontenot JD
    Immunology; 2016 Apr; 147(4):399-413. PubMed ID: 26694902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of N-sulfonyl-tetrahydroquinolines as RORc inverse agonists.
    Fauber BP; Gobbi A; Savy P; Burton B; Deng Y; Everett C; La H; Johnson AR; Lockey P; Norman M; Wong H
    Bioorg Med Chem Lett; 2015 Oct; 25(19):4109-13. PubMed ID: 26321361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological inhibition of RORγt suppresses the Th17 pathway and alleviates arthritis in vivo.
    Guendisch U; Weiss J; Ecoeur F; Riker JC; Kaupmann K; Kallen J; Hintermann S; Orain D; Dawson J; Billich A; Guntermann C
    PLoS One; 2017; 12(11):e0188391. PubMed ID: 29155882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and Characterization of CD12681, a Potent RORγ Inverse Agonist, Preclinical Candidate for the Topical Treatment of Psoriasis.
    Ouvry G; Atrux-Tallau N; Bihl F; Bondu A; Bouix-Peter C; Carlavan I; Christin O; Cuadrado MJ; Defoin-Platel C; Deret S; Duvert D; Feret C; Forissier M; Fournier JF; Froude D; Hacini-Rachinel F; Harris CS; Hervouet C; Huguet H; Lafitte G; Luzy AP; Musicki B; Orfila D; Ozello B; Pascau C; Pascau J; Parnet V; Peluchon G; Pierre R; Piwnica D; Raffin C; Rossio P; Spiesse D; Taquet N; Thoreau E; Vatinel R; Vial E; Hennequin LF
    ChemMedChem; 2018 Feb; 13(4):321-337. PubMed ID: 29327456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.
    Zhang W; Zhang J; Fang L; Zhou L; Wang S; Xiang Z; Li Y; Wisely B; Zhang G; An G; Wang Y; Leung S; Zhong Z
    Mol Pharmacol; 2012 Oct; 82(4):583-90. PubMed ID: 22700697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of biaryl carboxylamides as potent RORγ inverse agonists.
    Chao J; Enyedy I; Van Vloten K; Marcotte D; Guertin K; Hutchings R; Powell N; Jones H; Bohnert T; Peng CC; Silvian L; Hong VS; Little K; Banerjee D; Peng L; Taveras A; Viney JL; Fontenot J
    Bioorg Med Chem Lett; 2015 Aug; 25(15):2991-7. PubMed ID: 26048806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delineation of the molecular determinants of the unique allosteric binding site of the orphan nuclear receptor RORγt.
    Leijten-van de Gevel IA; Brunsveld L
    J Biol Chem; 2020 Jul; 295(27):9183-9191. PubMed ID: 32439807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 6-Substituted quinolines as RORγt inverse agonists.
    Barbay JK; Cummings MD; Abad M; Castro G; Kreutter KD; Kummer DA; Maharoof U; Milligan C; Nishimura R; Pierce J; Schalk-Hihi C; Spurlino J; Tanis VM; Urbanski M; Venkatesan H; Wang A; Woods C; Wolin R; Xue X; Edwards JP; Fourie AM; Leonard K
    Bioorg Med Chem Lett; 2017 Dec; 27(23):5277-5283. PubMed ID: 29079472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors.
    Li X; Anderson M; Collin D; Muegge I; Wan J; Brennan D; Kugler S; Terenzio D; Kennedy C; Lin S; Labadia ME; Cook B; Hughes R; Farrow NA
    J Biol Chem; 2017 Jul; 292(28):11618-11630. PubMed ID: 28546429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.