These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26553478)

  • 1. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis.
    Bräuer A; Beck P; Hintermann L; Groll M
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):422-6. PubMed ID: 26553478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal Dioxygenase AsqJ Is Promiscuous and Bimodal: Substrate-Directed Formation of Quinolones versus Quinazolinones.
    Einsiedler M; Jamieson CS; Maskeri MA; Houk KN; Gulder TAM
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8297-8302. PubMed ID: 33411393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-heme dioxygenase catalyzes atypical oxidations of 6,7-bicyclic systems to form the 6,6-quinolone core of viridicatin-type fungal alkaloids.
    Ishikawa N; Tanaka H; Koyama F; Noguchi H; Wang CC; Hotta K; Watanabe K
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12880-4. PubMed ID: 25251934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On how the binding cavity of AsqJ dioxygenase controls the desaturation reaction regioselectivity: a QM/MM study.
    Wojdyla Z; Borowski T
    J Biol Inorg Chem; 2018 Jul; 23(5):795-808. PubMed ID: 29876666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic mechanism and molecular engineering of quinolone biosynthesis in dioxygenase AsqJ.
    Mader SL; Bräuer A; Groll M; Kaila VRI
    Nat Commun; 2018 Mar; 9(1):1168. PubMed ID: 29563492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxy Intermediate Drives Carbon Bond Activation in the Dioxygenase AsqJ.
    Auman D; Ecker F; Mader SL; Dorst KM; Bräuer A; Widmalm G; Groll M; Kaila VRI
    J Am Chem Soc; 2022 Aug; 144(34):15622-15632. PubMed ID: 35980821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into dioxygen activation, oxygen atom exchange and substrate epoxidation by AsqJ dioxygenase from quantum mechanical/molecular mechanical calculations.
    Song X; Lu J; Lai W
    Phys Chem Chem Phys; 2017 Aug; 19(30):20188-20197. PubMed ID: 28726913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of extended product structural space of the fungal dioxygenase AsqJ.
    Einsiedler M; Gulder TAM
    Nat Commun; 2023 Jun; 14(1):3658. PubMed ID: 37339975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis.
    Zou Y; Garcia-Borràs M; Tang MC; Hirayama Y; Li DH; Li L; Watanabe K; Houk KN; Tang Y
    Nat Chem Biol; 2017 Mar; 13(3):325-332. PubMed ID: 28114276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the Substrate Promiscuity of Dioxygenase AsqJ and Developing Efficient Chemoenzymatic Synthesis for Quinolones.
    Tang H; Tang Y; Kurnikov IV; Liao HJ; Chan NL; Kurnikova MG; Guo Y; Chang WC
    ACS Catal; 2021 Jun; 11(12):7186-7192. PubMed ID: 35721870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired flavonol and quinolone dioxygenation by a non-heme iron catalyst modeling the action of flavonol and 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases.
    Pap JS; Matuz A; Baráth G; Kripli B; Giorgi M; Speier G; Kaizer J
    J Inorg Biochem; 2012 Mar; 108():15-21. PubMed ID: 22265834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The last step of kanamycin biosynthesis: unique deamination reaction catalyzed by the α-ketoglutarate-dependent nonheme iron dioxygenase KanJ and the NADPH-dependent reductase KanK.
    Sucipto H; Kudo F; Eguchi T
    Angew Chem Int Ed Engl; 2012 Apr; 51(14):3428-31. PubMed ID: 22374809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products.
    Wu LF; Meng S; Tang GL
    Biochim Biophys Acta; 2016 May; 1864(5):453-70. PubMed ID: 26845569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-assisted O2 activation in a cofactor-independent dioxygenase.
    Thierbach S; Bui N; Zapp J; Chhabra SR; Kappl R; Fetzner S
    Chem Biol; 2014 Feb; 21(2):217-25. PubMed ID: 24388758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FtmOx1, a non-heme Fe(II) and alpha-ketoglutarate-dependent dioxygenase, catalyses the endoperoxide formation of verruculogen in Aspergillus fumigatus.
    Steffan N; Grundmann A; Afiyatullov S; Ruan H; Li SM
    Org Biomol Chem; 2009 Oct; 7(19):4082-7. PubMed ID: 19763315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding pockets and permeation channels for dioxygen through cofactorless 3-hydroxy-2-methylquinolin-4-one 2,4-dioxygenase in association with its natural substrate, 3-hydroxy-2-methylquinolin-4(1H)-one. A perspective from molecular dynamics simulations.
    Pietra F
    Chem Biodivers; 2014 Jun; 11(6):861-71. PubMed ID: 24934672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ONIOM study on a missing piece in our understanding of heme chemistry: bacterial tryptophan 2,3-dioxygenase with dual oxidants.
    Chung LW; Li X; Sugimoto H; Shiro Y; Morokuma K
    J Am Chem Soc; 2010 Sep; 132(34):11993-2005. PubMed ID: 20698527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis.
    Matsuda Y; Awakawa T; Wakimoto T; Abe I
    J Am Chem Soc; 2013 Jul; 135(30):10962-5. PubMed ID: 23865690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the quinoline N-hydroxylating cytochrome P450 RauA, an essential enzyme that confers antibiotic activity on aurachin alkaloids.
    Yasutake Y; Kitagawa W; Hata M; Nishioka T; Ozaki T; Nishiyama M; Kuzuyama T; Tamura T
    FEBS Lett; 2014 Jan; 588(1):105-10. PubMed ID: 24269679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.