These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 26553752)
21. Hierarchically superstructured prussian blue analogues: spontaneous assembly synthesis and applications as pseudocapacitive materials. Yue Y; Zhang Z; Binder AJ; Chen J; Jin X; Overbury SH; Dai S ChemSusChem; 2015 Jan; 8(1):177-83. PubMed ID: 25385481 [TBL] [Abstract][Full Text] [Related]
22. Octahedral metal clusters as building blocks of trimetallic superexpanded Prussian blue analogues. Zhang JJ; Lachgar A Inorg Chem; 2015 Feb; 54(3):1082-90. PubMed ID: 25590572 [TBL] [Abstract][Full Text] [Related]
23. Chemistry of cobalt(II) confined in the pores of ordered silica monoliths: from the formation of the monolith to the CoFe Prussian blue analogue nanocomposite. Aouadi M; Fornasieri G; Briois V; Durand P; Bleuzen A Chemistry; 2012 Feb; 18(9):2617-23. PubMed ID: 22278956 [TBL] [Abstract][Full Text] [Related]
24. Nanosized heterostructures of Au@Prussian blue analogues: towards multifunctionality at the nanoscale. Maurin-Pasturel G; Long J; Guari Y; Godiard F; Willinger MG; Guerin C; Larionova J Angew Chem Int Ed Engl; 2014 Apr; 53(15):3872-6. PubMed ID: 24574155 [TBL] [Abstract][Full Text] [Related]
25. Photoinduced ferrimagnetic systems in Prussian blue analogues C(I)xCo4[Fe(CN)6]y (C(I) = alkali cation). 3. Control of the photo- and thermally induced electron transfer by the [Fe(CN)6] vacancies in cesium derivatives. Escax V; Bleuzen A; Cartier Dit Moulin C; Villiam F; Goujon A; Varret F; Verdaguer M J Am Chem Soc; 2001 Dec; 123(50):12536-43. PubMed ID: 11741417 [TBL] [Abstract][Full Text] [Related]
26. Elaboration of Prussian Blue Analogue/Silica Nanocomposites: Towards Tailor-Made Nano-Scale Electronic Devices. Fornasieri G; Aouadi M; Delahaye E; Beaunier P; Durand D; Rivière E; Albouy PA; Brisset F; Bleuzen A Materials (Basel); 2012 Mar; 5(3):385-403. PubMed ID: 28817053 [TBL] [Abstract][Full Text] [Related]
27. Spectroscopic and magnetic properties of a series of μ-cyano bridged bimetallic compounds of the type M(II)-NC-Fe(III) (M = Mn, Co, and Zn) using the building block [Fe(III)(CN)5imidazole]2-. Tchouka H; Meetsma A; Browne WR Inorg Chem; 2010 Nov; 49(22):10557-70. PubMed ID: 20964312 [TBL] [Abstract][Full Text] [Related]
28. From molecular design and materials construction to organic nanophotonic devices. Zhang C; Yan Y; Zhao YS; Yao J Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682 [TBL] [Abstract][Full Text] [Related]
29. Fast and persistent electrocatalytic water oxidation by Co-Fe Prussian blue coordination polymers. Pintado S; Goberna-Ferrón S; Escudero-Adán EC; Galán-Mascarós JR J Am Chem Soc; 2013 Sep; 135(36):13270-3. PubMed ID: 23978044 [TBL] [Abstract][Full Text] [Related]
30. Probing spin density and local structure in the Prussian blue analogues CsCd[Fe/Co(CN)6]·0.5H2O and Cd3[Fe/Co(CN)6]2·15H2O with solid-state MAS NMR spectroscopy. Flambard A; Köhler FH; Lescouëzec R; Revel B Chemistry; 2011 Oct; 17(41):11567-75. PubMed ID: 21882267 [TBL] [Abstract][Full Text] [Related]
31. Observation of the anisotropic photoinduced magnetization effect in Co-Fe Prussian blue thin films fabricated by using clay Langmuir-Blodgett films as a template. Yamamoto T; Umemura Y; Sato O; Einaga Y J Am Chem Soc; 2005 Nov; 127(46):16065-73. PubMed ID: 16287293 [TBL] [Abstract][Full Text] [Related]
32. Dimensional Transformation of Molecular Magnetic Materials. Huang Y; Gong W; Zhang G; Li Z; Lin H; Yan Q; Ren S ACS Nano; 2022 Aug; 16(8):13232-13240. PubMed ID: 35938918 [TBL] [Abstract][Full Text] [Related]
33. Paramagnetic Prussian Blue Analogues CsM(II)[M(III)(CN)6]. The Quest for Spin on Cesium Ions by Use of (133)Cs MAS NMR Spectroscopy. Köhler FH; Storcheva O Inorg Chem; 2015 Jul; 54(14):6801-6. PubMed ID: 26134712 [TBL] [Abstract][Full Text] [Related]
34. Trigonal-bipyramidal metal cyanide complexes: a versatile platform for the systematic assessment of the magnetic properties of Prussian blue materials. Funck KE; Hilfiger MG; Berlinguette CP; Shatruk M; Wernsdorfer W; Dunbar KR Inorg Chem; 2009 Apr; 48(8):3438-52. PubMed ID: 19361244 [TBL] [Abstract][Full Text] [Related]
35. Photoinduced magnetism in core/shell Prussian blue analogue heterostructures of K(j)Ni(k)[Cr(CN)6]l·nH2O with Rb(a)Co(b)[Fe(CN)6]c·mH2O. Dumont MF; Knowles ES; Guiet A; Pajerowski DM; Gomez A; Kycia SW; Meisel MW; Talham DR Inorg Chem; 2011 May; 50(10):4295-300. PubMed ID: 21506586 [TBL] [Abstract][Full Text] [Related]
36. Characterization and utilization of Prussian blue and its pigments. Grandjean F; Samain L; Long GJ Dalton Trans; 2016 Nov; 45(45):18018-18044. PubMed ID: 27801448 [TBL] [Abstract][Full Text] [Related]
37. Nonlinear magnetooptical effects caused by piezoelectric ferromagnetism in F3m-type Prussian blue analogues. Nuida T; Matsuda T; Tokoro H; Sakurai S; Hashimoto K; Ohkoshi S J Am Chem Soc; 2005 Aug; 127(33):11604-5. PubMed ID: 16104728 [TBL] [Abstract][Full Text] [Related]
38. Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective. Pardo E; Ruiz-García R; Cano J; Ottenwaelder X; Lescouëzec R; Journaux Y; Lloret F; Julve M Dalton Trans; 2008 Jun; (21):2780-805. PubMed ID: 18478138 [TBL] [Abstract][Full Text] [Related]
39. Reduction of Prussian Blue by the two iron-reducing microorganisms Geobacter metallireducens and Shewanella alga. Jahn MK; Haderlein SB; Meckenstock RU Environ Microbiol; 2006 Feb; 8(2):362-7. PubMed ID: 16423022 [TBL] [Abstract][Full Text] [Related]
40. Room-temperature photoinduced electron transfer in a Prussian blue analogue under hydrostatic pressure. Cafun JD; Lejeune J; Baudelet F; Dumas P; Itié JP; Bleuzen A Angew Chem Int Ed Engl; 2012 Sep; 51(36):9146-8. PubMed ID: 22888080 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]