BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26553881)

  • 1. A study of cytocompatibility and degradation of iron-based biodegradable materials.
    Oriňaková R; Oriňak A; Giretová M; Medvecký L; Kupková M; Hrubovčáková M; Maskal'ová I; Macko J; Kal'avský F
    J Biomater Appl; 2016 Feb; 30(7):1060-70. PubMed ID: 26553881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
    Hong D; Chou DT; Velikokhatnyi OI; Roy A; Lee B; Swink I; Issaev I; Kuhn HA; Kumta PN
    Acta Biomater; 2016 Nov; 45():375-386. PubMed ID: 27562611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials.
    Wang H; Zheng Y; Liu J; Jiang C; Li Y
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():60-66. PubMed ID: 27987750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of in vitro and in vivo biocompatibility of iron produced by powder metallurgy.
    Paim TC; Wermuth DP; Bertaco I; Zanatelli C; Naasani LIS; Slaviero M; Driemeier D; Schaeffer L; Wink MR
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111129. PubMed ID: 32600726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen Coating Effects on Fe-Mn Bioresorbable Alloys.
    Huang S; Ulloa A; Nauman E; Stanciu L
    J Orthop Res; 2020 Mar; 38(3):523-535. PubMed ID: 31608487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents.
    Hermawan H; Dubé D; Mantovani D
    J Biomed Mater Res A; 2010 Apr; 93(1):1-11. PubMed ID: 19437432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.
    Chou DT; Wells D; Hong D; Lee B; Kuhn H; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8593-603. PubMed ID: 23624222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering.
    Huang T; Cheng J; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():43-53. PubMed ID: 24411350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of microstructure and strain on the degradation behavior of novel bioresorbable iron-manganese alloy implants.
    Heiden M; Kustas A; Chaput K; Nauman E; Johnson D; Stanciu L
    J Biomed Mater Res A; 2015 Feb; 103(2):738-45. PubMed ID: 24825402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the cytocompatibility of biodegradable Fe-based alloys.
    Schinhammer M; Gerber I; Hänzi AC; Uggowitzer PJ
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):782-9. PubMed ID: 25427488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship.
    Moravej M; Prima F; Fiset M; Mantovani D
    Acta Biomater; 2010 May; 6(5):1726-35. PubMed ID: 20085829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of electrolyte composition and deposition current for Fe/Fe-P electroformed bilayers for biodegradable metallic medical applications.
    Mostavan A; Paternoster C; Tolouei R; Ghali E; Dubé D; Mantovani D
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):195-206. PubMed ID: 27770881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies.
    Hermawan H; Purnama A; Dube D; Couet J; Mantovani D
    Acta Biomater; 2010 May; 6(5):1852-60. PubMed ID: 19941977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification.
    Zhao C; Pan F; Zhao S; Pan H; Song K; Tang A
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():245-51. PubMed ID: 26046288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications.
    Drynda A; Hassel T; Bach FW; Peuster M
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):649-60. PubMed ID: 24976236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering.
    Cheng J; Zheng YF
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):485-97. PubMed ID: 23359385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg
    Sikora-Jasinska M; Paternoster C; Mostaed E; Tolouei R; Casati R; Vedani M; Mantovani D
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():511-521. PubMed ID: 28888005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel porous Fe/Fe-W alloy scaffold with a double-layer structured skeleton: Preparation, in vitro degradability and biocompatibility.
    He J; He FL; Li DW; Liu YL; Yin DC
    Colloids Surf B Biointerfaces; 2016 Jun; 142():325-333. PubMed ID: 26970820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents.
    Purnama A; Hermawan H; Champetier S; Mantovani D; Couet J
    Acta Biomater; 2013 Nov; 9(10):8746-53. PubMed ID: 23499988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.