These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26554339)

  • 21. Calcium Imaging of Neuronal Activity in Drosophila Can Identify Anticonvulsive Compounds.
    Streit AK; Fan YN; Masullo L; Baines RA
    PLoS One; 2016; 11(2):e0148461. PubMed ID: 26863447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GABA modulates Drosophila circadian clock neurons via GABAB receptors and decreases in calcium.
    Hamasaka Y; Wegener C; Nässel DR
    J Neurobiol; 2005 Dec; 65(3):225-40. PubMed ID: 16118795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development.
    Sawin-McCormack EP; Sokolowski MB; Campos AR
    J Neurogenet; 1995 Nov; 10(2):119-35. PubMed ID: 8592272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Larval ethanol exposure alters adult circadian free-running locomotor activity rhythm in Drosophila melanogaster.
    Seggio JA; Possidente B; Ahmad ST
    Chronobiol Int; 2012 Feb; 29(1):75-81. PubMed ID: 22217104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GABAergic regulation of locomotion before and during an ethanol exposure in Drosophila melanogaster.
    Daack CW; Yeh D; Busch M; Kliethermes CL
    Behav Brain Res; 2021 Jul; 410():113369. PubMed ID: 34015397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitivity differences displayed by Drosophila melanogaster larvae of different ages to the toxic effects of growth on media containing aflatoxin B1.
    Chinnici JP; Erlanger L; Charnock M; Jones M; Stein J
    Chem Biol Interact; 1979 Mar; 24(3):373-80. PubMed ID: 106976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased persistent Na+ current contributes to seizure in the slamdance bang-sensitive Drosophila mutant.
    Marley R; Baines RA
    J Neurophysiol; 2011 Jul; 106(1):18-29. PubMed ID: 21451059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alterations in development, behavior, and physiology in Drosophila larva that have reduced ecdysone production.
    Li H; Harrison D; Jones G; Jones D; Cooper RL
    J Neurophysiol; 2001 Jan; 85(1):98-104. PubMed ID: 11152710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GABAergic synaptic transmission modulates swimming in the ascidian larva.
    Brown ER; Nishino A; Bone Q; Meinertzhagen IA; Okamura Y
    Eur J Neurosci; 2005 Nov; 22(10):2541-8. PubMed ID: 16307596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new Drosophila model to study the interaction between genetic and environmental factors in Parkinson's disease.
    Varga SJ; Qi C; Podolsky E; Lee D
    Brain Res; 2014 Oct; 1583():277-86. PubMed ID: 25130663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of Rdl in resistance to phenylpyrazoles in Drosophila melanogaster.
    Remnant EJ; Morton CJ; Daborn PJ; Lumb C; Yang YT; Ng HL; Parker MW; Batterham P
    Insect Biochem Mol Biol; 2014 Nov; 54():11-21. PubMed ID: 25193377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased throughput assays of locomotor dysfunction in Drosophila larvae.
    Sinadinos C; Cowan CM; Wyttenbach A; Mudher A
    J Neurosci Methods; 2012 Jan; 203(2):325-34. PubMed ID: 21925540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute and chronic effects of atmospheric oxygen on the feeding behavior of Drosophila melanogaster larvae.
    Farzin M; Albert T; Pierce N; VandenBrooks JM; Dodge T; Harrison JF
    J Insect Physiol; 2014 Sep; 68():23-9. PubMed ID: 25008193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of a transmembrane amino acid on etomidate sensitivity of an invertebrate GABA receptor.
    McGurk KA; Pistis M; Belelli D; Hope AG; Lambert JJ
    Br J Pharmacol; 1998 May; 124(1):13-20. PubMed ID: 9630337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster.
    Carmona ER; Guecheva TN; Creus A; Marcos R
    Environ Mol Mutagen; 2011 Mar; 52(2):165-9. PubMed ID: 20740640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Burrowing/Tunneling Assay for Detection of Hypoxia in Drosophila melanogaster Larvae.
    Qiang KM; Zhou F; Beckingham KM
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29658928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. gamma-Aminobutyric acid (GABA) signaling components in Drosophila: immunocytochemical localization of GABA(B) receptors in relation to the GABA(A) receptor subunit RDL and a vesicular GABA transporter.
    Enell L; Hamasaka Y; Kolodziejczyk A; Nässel DR
    J Comp Neurol; 2007 Nov; 505(1):18-31. PubMed ID: 17729251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methods to Assay the Behavior of Drosophila melanogaster for Toxicity Study.
    Xiao G
    Methods Mol Biol; 2021; 2326():47-54. PubMed ID: 34097260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the toxic potential of calcium carbide in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9).
    Danish M; Fatima A; Khanam S; Jyoti S; Rahul ; Ali F; Naz F; Siddique YH
    Chemosphere; 2015 Nov; 139():469-78. PubMed ID: 26298668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.