BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26554583)

  • 1. In Vivo Real-Time Control of Gene Expression: A Comparative Analysis of Feedback Control Strategies in Yeast.
    Fiore G; Perrino G; di Bernardo M; di Bernardo D
    ACS Synth Biol; 2016 Feb; 5(2):154-62. PubMed ID: 26554583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae.
    Teo WS; Chang MW
    Biotechnol Bioeng; 2014 Jan; 111(1):144-51. PubMed ID: 23860786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The regulatable MAL32 promoter in Saccharomyces cerevisiae: characteristics and tools to facilitate its use.
    Meurer M; Chevyreva V; Cerulus B; Knop M
    Yeast; 2017 Jan; 34(1):39-49. PubMed ID: 27714848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Control of Gene Expression in Mammalian Cells.
    Fracassi C; Postiglione L; Fiore G; di Bernardo D
    ACS Synth Biol; 2016 Apr; 5(4):296-302. PubMed ID: 26414746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Expanded Heterologous GAL Promoter Collection for Diauxie-Inducible Expression in Saccharomyces cerevisiae.
    Peng B; Wood RJ; Nielsen LK; Vickers CE
    ACS Synth Biol; 2018 Feb; 7(2):748-751. PubMed ID: 29301066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of GAL1 promoter-driven expression system with artificial transcription factors.
    Park KS; Kim JS
    Biochem Biophys Res Commun; 2006 Dec; 351(2):412-7. PubMed ID: 17069762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimodal expression of yeast GAL genes is controlled by a long non-coding RNA and a bifunctional galactokinase.
    Zacharioudakis I; Tzamarias D
    Biochem Biophys Res Commun; 2017 Apr; 486(1):63-69. PubMed ID: 28254434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactose induction of the GAL1 gene requires conditional degradation of the Mig2 repressor.
    Lim MK; Siew WL; Zhao J; Tay YC; Ang E; Lehming N
    Biochem J; 2011 May; 435(3):641-9. PubMed ID: 21323640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis.
    Lee KM; DaSilva NA
    Yeast; 2005 Apr; 22(6):431-40. PubMed ID: 15849781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast.
    Rienzo A; Poveda-Huertes D; Aydin S; Buchler NE; Pascual-Ahuir A; Proft M
    Mol Cell Biol; 2015 Nov; 35(21):3669-83. PubMed ID: 26283730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-size regulation in budding yeast does not depend on linear accumulation of Whi5.
    Barber F; Amir A; Murray AW
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14243-14250. PubMed ID: 32518113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters.
    Blazeck J; Garg R; Reed B; Alper HS
    Biotechnol Bioeng; 2012 Nov; 109(11):2884-95. PubMed ID: 22565375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation.
    Gligoris T; Thireos G; Tzamarias D
    Mol Cell Biol; 2007 Jun; 27(11):4198-205. PubMed ID: 17387147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities.
    Peng B; Williams TC; Henry M; Nielsen LK; Vickers CE
    Microb Cell Fact; 2015 Jun; 14():91. PubMed ID: 26112740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interallelic interaction and gene regulation in budding yeast.
    Zhang D; Bai L
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):4428-33. PubMed ID: 27044105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise reduction as an emergent property of single-cell aging.
    Liu P; Song R; Elison GL; Peng W; Acar M
    Nat Commun; 2017 Sep; 8(1):680. PubMed ID: 28947742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae.
    McIsaac RS; Gibney PA; Chandran SS; Benjamin KR; Botstein D
    Nucleic Acids Res; 2014 Apr; 42(6):e48. PubMed ID: 24445804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of In Vivo Protein Binding Affinities in a Signaling Network with Mass Spectrometry.
    Gencoglu M; Schmidt A; Becskei A
    ACS Synth Biol; 2017 Jul; 6(7):1305-1314. PubMed ID: 28333434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.