These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26554672)

  • 1. Tolerance of Intrinsic Defects in PbS Quantum Dots.
    Zherebetskyy D; Zhang Y; Salmeron M; Wang LW
    J Phys Chem Lett; 2015 Dec; 6(23):4711-6. PubMed ID: 26554672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior.
    Debellis D; Gigli G; Ten Brinck S; Infante I; Giansante C
    Nano Lett; 2017 Feb; 17(2):1248-1254. PubMed ID: 28055216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room temperature photoluminescence of PbS quantum dots: Capping agent and thermal effect.
    Kong HS; Kim BJ; Kang KS
    Luminescence; 2019 May; 34(3):387-390. PubMed ID: 30811807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Darker-than-black" PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands.
    Giansante C; Infante I; Fabiano E; Grisorio R; Suranna GP; Gigli G
    J Am Chem Soc; 2015 Feb; 137(5):1875-86. PubMed ID: 25574692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dominant role of exciton quenching in PbS quantum-dot-based photovoltaic devices.
    Wanger DD; Correa RE; Dauler EA; Bawendi MG
    Nano Lett; 2013; 13(12):5907-12. PubMed ID: 24256125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling.
    Geiregat P; Justo Y; Abe S; Flamee S; Hens Z
    ACS Nano; 2013 Feb; 7(2):987-93. PubMed ID: 23297750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of PbS quantum dot doped TiO2 nanotubes.
    Ratanatawanate C; Xiong C; Balkus KJ
    ACS Nano; 2008 Aug; 2(8):1682-8. PubMed ID: 19206372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound-assisted synthesis of PbS quantum dots stabilized by 1,2-benzenedimethanethiol and attachment to single-walled carbon nanotubes.
    Das A; Wai CM
    Ultrason Sonochem; 2014 Mar; 21(2):892-900. PubMed ID: 24074959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum confinement effects on charge-transfer between PbS quantum dots and 4-mercaptopyridine.
    Fu X; Pan Y; Wang X; Lombardi JR
    J Chem Phys; 2011 Jan; 134(2):024707. PubMed ID: 21241146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-enhanced fluorescence of PbS quantum dots for remote near-infrared imaging.
    Wu K; Zhang J; Fan S; Li J; Zhang C; Qiao K; Qian L; Han J; Tang J; Wang S
    Chem Commun (Camb); 2015 Jan; 51(1):141-4. PubMed ID: 25385256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient carrier multiplication in PbS nanosheets.
    Aerts M; Bielewicz T; Klinke C; Grozema FC; Houtepen AJ; Schins JM; Siebbeles LD
    Nat Commun; 2014 Apr; 5():3789. PubMed ID: 24781188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted cation exchange toward synthesis of near-infrared emitting PbS/CdS core/shell quantum dots with significantly improved quantum yields through a uniform growth path.
    Ren F; Zhao H; Vetrone F; Ma D
    Nanoscale; 2013 Sep; 5(17):7800-4. PubMed ID: 23887182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability.
    Choi H; Ko JH; Kim YH; Jeong S
    J Am Chem Soc; 2013 Apr; 135(14):5278-81. PubMed ID: 23496143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical DNA detection of hepatitis E virus genotype 3 using PbS quantum dot labelling.
    Ngo DB; Chaibun T; Yin LS; Lertanantawong B; Surareungchai W
    Anal Bioanal Chem; 2021 Feb; 413(4):1027-1037. PubMed ID: 33236225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high quantum efficiency preserving approach to ligand exchange on lead sulfide quantum dots and interdot resonant energy transfer.
    Lingley Z; Lu S; Madhukar A
    Nano Lett; 2011 Jul; 11(7):2887-91. PubMed ID: 21707024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells.
    Kramer IJ; Zhitomirsky D; Bass JD; Rice PM; Topuria T; Krupp L; Thon SM; Ip AH; Debnath R; Kim HC; Sargent EH
    Adv Mater; 2012 May; 24(17):2315-9. PubMed ID: 22467240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote trap passivation in colloidal quantum dot bulk nano-heterojunctions and its effect in solution-processed solar cells.
    Rath AK; Pelayo Garcia de Arquer F; Stavrinadis A; Lasanta T; Bernechea M; Diedenhofen SL; Konstantatos G
    Adv Mater; 2014 Jul; 26(27):4741-7. PubMed ID: 24895324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the physical properties of thiol-capped PbS quantum dots by thermal annealing.
    Turyanska L; Elfurawi U; Li M; Fay MW; Thomas NR; Mann S; Blokland JH; Christianen PC; Patanè A
    Nanotechnology; 2009 Aug; 20(31):315604. PubMed ID: 19597263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional study of the structures of lead sulfide clusters (PbS)n (n = 1-9).
    Zeng H; Schelly ZA; Ueno-Noto K; Marynick DS
    J Phys Chem A; 2005 Mar; 109(8):1616-20. PubMed ID: 16833485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency.
    Barkhouse DA; Pattantyus-Abraham AG; Levina L; Sargent EH
    ACS Nano; 2008 Nov; 2(11):2356-62. PubMed ID: 19206403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.