These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26554735)

  • 1. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development.
    Vargas WA; Sanz-Martín JM; Rech GE; Armijos-Jaramillo VD; Rivera LP; Echeverria MM; Díaz-Mínguez JM; Thon MR; Sukno SA
    Mol Plant Microbe Interact; 2016 Feb; 29(2):83-95. PubMed ID: 26554735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola.
    Sanz-Martín JM; Pacheco-Arjona JR; Bello-Rico V; Vargas WA; Monod M; Díaz-Mínguez JM; Thon MR; Sukno SA
    Mol Plant Pathol; 2016 Sep; 17(7):1048-62. PubMed ID: 26619206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of a fadA ortholog in the growth and development of Colletotrichum graminicola in vitro and in planta.
    Venard C; Kulshrestha S; Sweigard J; Nuckles E; Vaillancourt L
    Fungal Genet Biol; 2008 Jun; 45(6):973-83. PubMed ID: 18448365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Penetration and colonization of unwounded maize tissues by the maize anthracnose pathogen Colletotrichum graminicola and the related nonpathogen C. sublineolum.
    Venard C; Vaillancourt L
    Mycologia; 2007; 99(3):368-77. PubMed ID: 17883028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola.
    Albarouki E; Deising HB
    Mol Plant Microbe Interact; 2013 Jun; 26(6):695-708. PubMed ID: 23639025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola.
    Ludwig N; Löhrer M; Hempel M; Mathea S; Schliebner I; Menzel M; Kiesow A; Schaffrath U; Deising HB; Horbach R
    Mol Plant Microbe Interact; 2014 Apr; 27(4):315-27. PubMed ID: 24261846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a diffusible factor that induces susceptibility in the Colletotrichum-maize disease interaction.
    Torres MF; Cuadros DF; Vaillancourt LJ
    Mol Plant Pathol; 2014 Jan; 15(1):80-93. PubMed ID: 24003973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two genes in a pathogenicity gene cluster encoding secreted proteins are required for appressorial penetration and infection of the maize anthracnose fungus Colletotrichum graminicola.
    Eisermann I; Weihmann F; Krijger JJ; Kröling C; Hause G; Menzel M; Pienkny S; Kiesow A; Deising HB; Wirsel SGR
    Environ Microbiol; 2019 Dec; 21(12):4773-4791. PubMed ID: 31599055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adequate Fe nutritional status of maize suppresses infection and biotrophic growth of Colletotrichum graminicola.
    Ye F; Albarouki E; Lingam B; Deising HB; von Wirén N
    Physiol Plant; 2014 Jul; 151(3):280-92. PubMed ID: 24512386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species Colletotrichum graminicola and Colletotrichum sublineola.
    Buiate EAS; Xavier KV; Moore N; Torres MF; Farman ML; Schardl CL; Vaillancourt LJ
    BMC Genomics; 2017 Jan; 18(1):67. PubMed ID: 28073340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize.
    Wicklow DT; Jordan AM; Gloer JB
    Mycol Res; 2009 Dec; 113(Pt 12):1433-42. PubMed ID: 19825415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correspondence between symptom development of Colletotrichum graminicola and fungal biomass, quantified by a newly developed qPCR assay, depends on the maize variety.
    Weihmann F; Eisermann I; Becher R; Krijger JJ; Hübner K; Deising HB; Wirsel SG
    BMC Microbiol; 2016 May; 16():94. PubMed ID: 27215339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The repertoire of effector candidates in Colletotrichum lindemuthianum reveals important information about Colletotrichum genus lifestyle.
    de Queiroz CB; Correia HLN; Santana MF; Batista DS; Vidigal PMP; Brommonschenkel SH; de Queiroz MV
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2295-2309. PubMed ID: 30685810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candidate effectors contribute to race differentiation and virulence of the lentil anthracnose pathogen Colletotrichum lentis.
    Bhadauria V; MacLachlan R; Pozniak C; Banniza S
    BMC Genomics; 2015 Aug; 16(1):628. PubMed ID: 26296655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola.
    Tang W; Coughlan S; Crane E; Beatty M; Duvick J
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1240-50. PubMed ID: 17073306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root infection and systemic colonization of maize by Colletotrichum graminicola.
    Sukno SA; García VM; Shaw BD; Thon MR
    Appl Environ Microbiol; 2008 Feb; 74(3):823-32. PubMed ID: 18065625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distinctive population structure of Colletotrichum species associated with olive anthracnose in the Algarve region of Portugal reflects a host-pathogen diversity hot spot.
    Talhinhas P; Neves-Martins J; Oliveira H; Sreenivasaprasad S
    FEMS Microbiol Lett; 2009 Jul; 296(1):31-8. PubMed ID: 19459972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize.
    Vargas WA; Martín JM; Rech GE; Rivera LP; Benito EP; Díaz-Mínguez JM; Thon MR; Sukno SA
    Plant Physiol; 2012 Mar; 158(3):1342-58. PubMed ID: 22247271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection.
    Voitsik AM; Muench S; Deising HB; Voll LM
    BMC Plant Biol; 2013 May; 13():85. PubMed ID: 23718541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amorphophallus konjac anthracnose caused by Colletotrichum siamense in China.
    Wu JP; Zhou J; Jiao ZB; Fu JP; Xiao Y; Guo FL
    J Appl Microbiol; 2020 Jan; 128(1):225-231. PubMed ID: 31566868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.