These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2655474)

  • 61. Studies of metabolism of round spermatids: cytochalasin B binding to cell membrane in relation to glucose transport.
    Nakamura M; Okinaga S; Arai K
    Andrologia; 1987; 19(2):178-82. PubMed ID: 3688487
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reconstitution of a partially purified Na+-independent D-glucose transport system from rat jejunal basolateral membranes.
    Ling KY; Faust RG
    Int J Biochem; 1983; 15(1):27-34. PubMed ID: 6219015
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rapid regulation of rat jejunal glucose transport by insulin in a luminally and vascularly perfused preparation.
    Pennington AM; Corpe CP; Kellett GL
    J Physiol; 1994 Jul; 478 ( Pt 2)(Pt 2):187-93. PubMed ID: 7965840
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Autoradiography of [3H]cytochalasin B binding in rat brain.
    Tucker SP; Cunningham VJ
    Brain Res; 1988 May; 450(1-2):131-6. PubMed ID: 2841000
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cytochalasin B-sensitive, sodium ion-dependent glucose transport in intestinal microvillous membrane.
    Uezato T; Fujita M
    Biochimie; 1988 Dec; 70(12):1775-9. PubMed ID: 3150682
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Low [3H]cytochalasin B binding in the cerebral cortex of newborn rat.
    Morin AM; Dwyer BE; Fujikawa DG; Wasterlain CG
    J Neurochem; 1988 Jul; 51(1):206-11. PubMed ID: 3379403
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of pressure on glucose transport in human erythrocytes.
    Thorne SD; Hall AC; Lowe AG
    FEBS Lett; 1992 Apr; 301(3):299-302. PubMed ID: 1577170
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mutation of two conserved arginine residues in the glucose transporter GLUT4 supresses transport activity, but not glucose-inhibitable binding of inhibitory ligands.
    Wandel S; Schurmann A; Becker W; Summers SA; Shanahan MF; Joost HG
    Naunyn Schmiedebergs Arch Pharmacol; 1995 Dec; 353(1):36-41. PubMed ID: 8750914
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Changes in the intrinsic fluorescence of the human erythrocyte monosaccharide transporter upon ligand binding.
    Gorga FR; Lienhard GE
    Biochemistry; 1982 Apr; 21(8):1905-8. PubMed ID: 7200802
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chronic hyperglycemia increases the density of glucose transporters in human erythrocyte membranes.
    Harik SI; Behmand RA; Arafah BM
    J Clin Endocrinol Metab; 1991 Apr; 72(4):814-8. PubMed ID: 2005206
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Insulin modulates rat intestinal glucose transport: effect of hypoinsulinemia and hyperinsulinemia.
    Westergaard H
    Am J Physiol; 1989 May; 256(5 Pt 1):G911-8. PubMed ID: 2655475
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hyperglycemia and net transintestinal glucose and sodium transport in the rat.
    Esposito G; Faelli A; Tosco M; Capraro V
    Pflugers Arch; 1981 May; 390(2):202-6. PubMed ID: 7195569
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A model for the mode of action of cytochalasin B inhibition of D-glucose transport in the human erythrocyte.
    Taylor NF; Gagneja GL
    Can J Biochem; 1975 Oct; 53(10):1078-84. PubMed ID: 1203755
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cytochalasin E: inhibition of intestinal glucose absorption in the mouse.
    Glinsukon T; Kongsuktrakoon B; Toskulkao C; Sophasan S
    Toxicol Lett; 1983 Mar; 15(4):341-8. PubMed ID: 6836602
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The ontogeny of the rabbit hepatic glucose transporter.
    Chundu K; Devaskar S
    Biochem Biophys Res Commun; 1988 Aug; 155(1):173-80. PubMed ID: 3046610
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Developmental maturation of D-glucose active transport system in rat intestine.
    Said HM; Greene HL; Moore MC; Ghishan FK
    Digestion; 1987; 36(4):195-200. PubMed ID: 3609499
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Psychoactive drugs affect glucose transport and the regulation of glucose metabolism.
    Dwyer DS; Ardizzone TD; Bradley RJ
    Int Rev Neurobiol; 2002; 51():503-30. PubMed ID: 12420369
    [No Abstract]   [Full Text] [Related]  

  • 78. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes.
    Seeley RJ; Chambers AP; Sandoval DA
    Cell Metab; 2015 Mar; 21(3):369-78. PubMed ID: 25662404
    [TBL] [Abstract][Full Text] [Related]  

  • 79. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice.
    Ait-Omar A; Monteiro-Sepulveda M; Poitou C; Le Gall M; Cotillard A; Gilet J; Garbin K; Houllier A; Château D; Lacombe A; Veyrie N; Hugol D; Tordjman J; Magnan C; Serradas P; Clément K; Leturque A; Brot-Laroche E
    Diabetes; 2011 Oct; 60(10):2598-607. PubMed ID: 21852673
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity.
    Drozdowski LA; Clandinin MT; Thomson AB
    World J Gastroenterol; 2009 Feb; 15(7):774-87. PubMed ID: 19230039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.