These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 26554843)

  • 21. Carving executive control at its joints: Working memory capacity predicts stimulus-stimulus, but not stimulus-response, conflict.
    Meier ME; Kane MJ
    J Exp Psychol Learn Mem Cogn; 2015 Nov; 41(6):1849-72. PubMed ID: 26120774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric coupling of action and outcome valence in active and observational feedback learning.
    Peterburs J; Frieling A; Bellebaum C
    Psychol Res; 2021 Jun; 85(4):1553-1566. PubMed ID: 32322967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-reported impulsivity in Huntington's disease patients and relationship to executive dysfunction and reward responsiveness.
    Johnson PL; Potts GF; Sanchez-Ramos J; Cimino CR
    J Clin Exp Neuropsychol; 2017 Sep; 39(7):694-706. PubMed ID: 27892808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expecting the good: Symbolic valence signals provoke action biases and undermine goal-directed behavior.
    Hoofs V; Prével A; Krebs RM
    Acta Psychol (Amst); 2020 May; 206():103063. PubMed ID: 32229313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitory mechanisms involved in Stroop-matching and stop-signal tasks and the role of impulsivity.
    Portugal ACA; Afonso AS; Caldas AL; Maturana W; Mocaiber I; Machado-Pinheiro W
    Acta Psychol (Amst); 2018 Nov; 191():234-243. PubMed ID: 30343096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of reward in the Simon task: Differences and similarities to the Stroop and Eriksen flanker tasks.
    Mittelstädt V; Ulrich R; König J; Hofbauer K; Mackenzie IG
    Atten Percept Psychophys; 2023 Apr; 85(3):949-959. PubMed ID: 36316615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From eyes to hands: Transfer of learning in the Simon task across motor effectors.
    Verghese A; Mattingley JB; Palmer PE; Dux PE
    Atten Percept Psychophys; 2018 Jan; 80(1):193-210. PubMed ID: 29043656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pavlovian influences on learning differ between rats and mice in a counter-balanced Go/NoGo judgement bias task.
    Jones S; Paul ES; Dayan P; Robinson ESJ; Mendl M
    Behav Brain Res; 2017 Jul; 331():214-224. PubMed ID: 28549647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased conflict-induced slowing, but no differences in conflict-induced positive or negative prediction error learning in patients with schizophrenia.
    Albrecht MA; Waltz JA; Cavanagh JF; Frank MJ; Gold JM
    Neuropsychologia; 2019 Feb; 123():131-140. PubMed ID: 29709580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The neural underpinnings of how reward associations can both guide and misguide attention.
    Krebs RM; Boehler CN; Egner T; Woldorff MG
    J Neurosci; 2011 Jun; 31(26):9752-9. PubMed ID: 21715640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intention to learn modulates the impact of reward and punishment on sequence learning.
    Steel A; Baker CI; Stagg CJ
    Sci Rep; 2020 Jun; 10(1):8906. PubMed ID: 32483289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined influence of valence and statistical learning on the control of attention: Evidence for independent sources of bias.
    Kim H; Anderson BA
    Cognition; 2021 Mar; 208():104554. PubMed ID: 33360961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of reward and punishment on brain activations associated with inhibitory control in cigarette smokers.
    Luijten M; O'Connor DA; Rossiter S; Franken IH; Hester R
    Addiction; 2013 Nov; 108(11):1969-78. PubMed ID: 23773427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaction to punishment, reflectivity, and passive avoidance learning in extraverts.
    Patterson CM; Kosson DS; Newman JP
    J Pers Soc Psychol; 1987 Mar; 52(3):565-75. PubMed ID: 3572724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Do Young Children Modulate Their Cognitive Control?
    Ambrosi S; Lemaire P; Blaye A
    Exp Psychol; 2016 Mar; 63(2):117-26. PubMed ID: 27221602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment.
    Mattfeld AT; Gluck MA; Stark CE
    Learn Mem; 2011; 18(11):703-11. PubMed ID: 22021252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inferior frontal cortex activity is modulated by reward sensitivity and performance variability.
    Fuentes-Claramonte P; Ávila C; Rodríguez-Pujadas A; Costumero V; Ventura-Campos N; Bustamante JC; Rosell-Negre P; Barrós-Loscertales A
    Biol Psychol; 2016 Feb; 114():127-37. PubMed ID: 26772873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The temporal dynamics of reversal learning: P3 amplitude predicts valence-specific behavioral adjustment.
    Donaldson KR; Ait Oumeziane B; Hélie S; Foti D
    Physiol Behav; 2016 Jul; 161():24-32. PubMed ID: 27059320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Working memory capacity predicts conflict-task performance.
    Gulbinaite R; Johnson A
    Q J Exp Psychol (Hove); 2014; 67(7):1383-400. PubMed ID: 24199908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model-based quantification of action control deficits in Parkinson's disease.
    Servant M; van Wouwe N; Wylie SA; Logan GD
    Neuropsychologia; 2018 Mar; 111():26-35. PubMed ID: 29360609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.