BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 26554946)

  • 1. Development of Inhibitors of Protein-protein Interactions through REPLACE: Application to the Design and Development Non-ATP Competitive CDK Inhibitors.
    Nandha Premnath P; Craig S; McInnes C
    J Vis Exp; 2015 Oct; (105):e52441. PubMed ID: 26554946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative conversion of cyclin binding groove peptides into druglike CDK inhibitors with antitumor activity.
    Premnath PN; Craig SN; Liu S; Anderson EL; Grigoroudis AI; Kontopidis G; Perkins TL; Wyatt MD; Pittman DL; McInnes C
    J Med Chem; 2015 Jan; 58(1):433-42. PubMed ID: 25454794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzamide capped peptidomimetics as non-ATP competitive inhibitors of CDK2 using the REPLACE strategy.
    Premnath PN; Craig SN; Liu S; McInnes C
    Bioorg Med Chem Lett; 2016 Aug; 26(15):3754-60. PubMed ID: 27297568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Truncation and optimisation of peptide inhibitors of cyclin-dependent kinase 2-cyclin a through structure-guided design.
    Kontopidis G; Andrews MJ; McInnes C; Plater A; Innes L; Renachowski S; Cowan A; Fischer PM
    ChemMedChem; 2009 Jul; 4(7):1120-8. PubMed ID: 19472269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptides or small molecules? Different approaches to develop more effective CDK inhibitors.
    Cirillo D; Pentimalli F; Giordano A
    Curr Med Chem; 2011; 18(19):2854-66. PubMed ID: 21651493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly potent p21(WAF1)-derived peptide inhibitors of CDK-mediated pRb phosphorylation: delineation and structural insight into their interactions with cyclin A.
    Zheleva DI; McInnes C; Gavine AL; Zhelev NZ; Fischer PM; Lane DP
    J Pept Res; 2002 Nov; 60(5):257-70. PubMed ID: 12383116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-noncompetitive inhibitors of CDK-cyclin complexes.
    Orzáez M; Gortat A; Mondragón L; Bachs O; Pérez-Payá E
    ChemMedChem; 2009 Jan; 4(1):19-24. PubMed ID: 19039815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment based discovery of arginine isosteres through REPLACE: towards non-ATP competitive CDK inhibitors.
    Premnath PN; Liu S; Perkins T; Abbott J; Anderson E; McInnes C
    Bioorg Med Chem; 2014 Jan; 22(1):616-22. PubMed ID: 24286762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-noncompetitive CDK inhibitors for cancer therapy: an overview.
    Abate AA; Pentimalli F; Esposito L; Giordano A
    Expert Opin Investig Drugs; 2013 Jul; 22(7):895-906. PubMed ID: 23735075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-Protein Interaction for the De Novo Design of Cyclin-Dependent Kinase Peptide Inhibitors.
    Arumugasamy K; Tripathi SK; Singh P; Singh SK
    Methods Mol Biol; 2016; 1336():59-66. PubMed ID: 26231708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK.
    Brown NR; Korolchuk S; Martin MP; Stanley WA; Moukhametzianov R; Noble MEM; Endicott JA
    Nat Commun; 2015 Apr; 6():6769. PubMed ID: 25864384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. REPLACE: a strategy for iterative design of cyclin-binding groove inhibitors.
    Andrews MJ; Kontopidis G; McInnes C; Plater A; Innes L; Cowan A; Jewsbury P; Fischer PM
    Chembiochem; 2006 Dec; 7(12):1909-15. PubMed ID: 17051658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of non-ATP competitive CDK/cyclin groove inhibitors through REPLACE-mediated fragment assembly.
    Liu S; Premnath PN; Bolger JK; Perkins TL; Kirkland LO; Kontopidis G; McInnes C
    J Med Chem; 2013 Feb; 56(4):1573-82. PubMed ID: 23323521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A.
    Canela N; Orzáez M; Fucho R; Mateo F; Gutierrez R; Pineda-Lucena A; Bachs O; Pérez-Payá E
    J Biol Chem; 2006 Nov; 281(47):35942-53. PubMed ID: 17001081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based discovery and optimization of potential cancer therapeutics targeting the cell cycle.
    Thomas MP; McInnes C
    IDrugs; 2006 Apr; 9(4):273-8. PubMed ID: 16596481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meriolins, a new class of cell death inducing kinase inhibitors with enhanced selectivity for cyclin-dependent kinases.
    Bettayeb K; Tirado OM; Marionneau-Lambot S; Ferandin Y; Lozach O; Morris JC; Mateo-Lozano S; Drueckes P; Schächtele C; Kubbutat MH; Liger F; Marquet B; Joseph B; Echalier A; Endicott JA; Notario V; Meijer L
    Cancer Res; 2007 Sep; 67(17):8325-34. PubMed ID: 17804748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Conformational Activation of CDK2 Kinase.
    Pellerano M; Tcherniuk S; Perals C; Ngoc Van TN; Garcin E; Mahuteau-Betzer F; Teulade-Fichou MP; Morris MC
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28430399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors.
    Kalra S; Joshi G; Munshi A; Kumar R
    Eur J Med Chem; 2017 Dec; 142():424-458. PubMed ID: 28911822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrahydro-3H-pyrazolo[4,3-a]phenanthridine-based CDK inhibitor.
    Opoku-Temeng C; Dayal N; Hernandez DE; Naganna N; Sintim HO
    Chem Commun (Camb); 2018 May; 54(36):4521-4524. PubMed ID: 29629444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small Molecule CDK Inhibitors for the Therapeutic Management of Cancer.
    Goel B; Tripathi N; Bhardwaj N; Jain SK
    Curr Top Med Chem; 2020; 20(17):1535-1563. PubMed ID: 32416692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.