BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26555050)

  • 1. Signaling from Glia and Cholinergic Neurons Controls Nutrient-Dependent Production of an Insulin-like Peptide for Drosophila Body Growth.
    Okamoto N; Nishimura T
    Dev Cell; 2015 Nov; 35(3):295-310. PubMed ID: 26555050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking Nutrients to Growth through a Positive Feedback Loop.
    Palu RA; Thummel CS
    Dev Cell; 2015 Nov; 35(3):265-6. PubMed ID: 26555046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote control of insulin secretion by fat cells in Drosophila.
    Géminard C; Rulifson EJ; Léopold P
    Cell Metab; 2009 Sep; 10(3):199-207. PubMed ID: 19723496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A secreted decoy of InR antagonizes insulin/IGF signaling to restrict body growth in Drosophila.
    Okamoto N; Nakamori R; Murai T; Yamauchi Y; Masuda A; Nishimura T
    Genes Dev; 2013 Jan; 27(1):87-97. PubMed ID: 23307869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Drosophila insulin-like peptide promotes growth during nonfeeding states.
    Slaidina M; Delanoue R; Gronke S; Partridge L; Léopold P
    Dev Cell; 2009 Dec; 17(6):874-84. PubMed ID: 20059956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster.
    Sano H; Nakamura A; Texada MJ; Truman JW; Ishimoto H; Kamikouchi A; Nibu Y; Kume K; Ida T; Kojima M
    PLoS Genet; 2015 May; 11(5):e1005209. PubMed ID: 26020940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of insulin-producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR.
    Birse RT; Söderberg JA; Luo J; Winther AM; Nässel DR
    J Exp Biol; 2011 Dec; 214(Pt 24):4201-8. PubMed ID: 22116763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved role for the Drosophila Pax6 homolog Eyeless in differentiation and function of insulin-producing neurons.
    Clements J; Hens K; Francis C; Schellens A; Callaerts P
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16183-8. PubMed ID: 18852455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into insulin secretion from transcriptome and genetic analysis of insulin-producing cells of Drosophila.
    Cao J; Ni J; Ma W; Shiu V; Milla LA; Park S; Spletter ML; Tang S; Zhang J; Wei X; Kim SK; Scott MP
    Genetics; 2014 May; 197(1):175-92. PubMed ID: 24558258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of Syndecan Transcript Levels in the Insulin-Producing Cells Affects Glucose Homeostasis in Adult Drosophila melanogaster.
    Warren JL; Hoxha E; Jumbo-Lucioni P; De Luca M
    DNA Cell Biol; 2017 Nov; 36(11):959-965. PubMed ID: 28945109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain.
    Bai H; Kang P; Tatar M
    Aging Cell; 2012 Dec; 11(6):978-85. PubMed ID: 22935001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sobremesa L-type Amino Acid Transporter Expressed in Glia Is Essential for Proper Timing of Development and Brain Growth.
    Galagovsky D; Depetris-Chauvin A; Manière G; Geillon F; Berthelot-Grosjean M; Noirot E; Alves G; Grosjean Y
    Cell Rep; 2018 Sep; 24(12):3156-3166.e4. PubMed ID: 30231999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53- and ERK7-dependent ribosome surveillance response regulates Drosophila insulin-like peptide secretion.
    Hasygar K; Hietakangas V
    PLoS Genet; 2014 Nov; 10(11):e1004764. PubMed ID: 25393288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central metabolic sensing remotely controls nutrient-sensitive endocrine response in
    Banerjee KK; Deshpande RS; Koppula P; Ayyub C; Kolthur-Seetharam U
    J Exp Biol; 2017 Apr; 220(Pt 7):1187-1191. PubMed ID: 28104798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mio acts in the Drosophila brain to control nutrient storage and feeding.
    Docherty JE; Manno JE; McDermott JE; DiAngelo JR
    Gene; 2015 Sep; 568(2):190-5. PubMed ID: 26024590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila.
    Sousa-Nunes R; Yee LL; Gould AP
    Nature; 2011 Mar; 471(7339):508-12. PubMed ID: 21346761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides.
    Nässel DR; Vanden Broeck J
    Cell Mol Life Sci; 2016 Jan; 73(2):271-90. PubMed ID: 26472340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient availability and growth: regulation of insulin signaling by dFOXO/FOXO1.
    Puig O; Tjian R
    Cell Cycle; 2006 Mar; 5(5):503-5. PubMed ID: 16552183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion.
    Kwak SJ; Hong SH; Bajracharya R; Yang SY; Lee KS; Yu K
    PLoS One; 2013; 8(7):e68641. PubMed ID: 23874700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. dSmad2 differentially regulates dILP2 and dILP5 in insulin producing and circadian pacemaker cells in unmated adult females.
    Goldsmith SL; Newfeld SJ
    PLoS One; 2023; 18(1):e0280529. PubMed ID: 36689407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.