These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26555096)

  • 21. Amyloid cores in prion domains: Key regulators for prion conformational conversion.
    Fernández MR; Batlle C; Gil-García M; Ventura S
    Prion; 2017 Jan; 11(1):31-39. PubMed ID: 28281928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A bioinformatics method for identifying Q/N-rich prion-like domains in proteins.
    Ross ED; Maclea KS; Anderson C; Ben-Hur A
    Methods Mol Biol; 2013; 1017():219-28. PubMed ID: 23719919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acid composition predicts prion activity.
    Afsar Minhas FUA; Ross ED; Ben-Hur A
    PLoS Comput Biol; 2017 Apr; 13(4):e1005465. PubMed ID: 28394888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yeast prions and human prion-like proteins: sequence features and prediction methods.
    Cascarina SM; Ross ED
    Cell Mol Life Sci; 2014 Jun; 71(11):2047-63. PubMed ID: 24390581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domains.
    Jiang Y; Li H; Zhu L; Zhou JM; Perrett S
    J Biol Chem; 2004 Jan; 279(5):3361-9. PubMed ID: 14610069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion.
    Osherovich LZ; Weissman JS
    Cell; 2001 Jul; 106(2):183-94. PubMed ID: 11511346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assembly of the asparagine- and glutamine-rich yeast prions into protein fibrils.
    Bousset L; Savistchenko J; Melki R
    Curr Alzheimer Res; 2008 Jun; 5(3):251-9. PubMed ID: 18537542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques.
    Perutz MF; Pope BJ; Owen D; Wanker EE; Scherzinger E
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5596-600. PubMed ID: 11960015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short disordered protein segment regulates cross-species transmission of a yeast prion.
    Shida T; Kamatari YO; Yoda T; Yamaguchi Y; Feig M; Ohhashi Y; Sugita Y; Kuwata K; Tanaka M
    Nat Chem Biol; 2020 Jul; 16(7):756-765. PubMed ID: 32284601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expanding the yeast prion world: Active prion conversion of non-glutamine/asparagine-rich Mod5 for cell survival.
    Suzuki G; Tanaka M
    Prion; 2013; 7(2):109-13. PubMed ID: 23117914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prion formation by a yeast GLFG nucleoporin.
    Halfmann R; Wright JR; Alberti S; Lindquist S; Rexach M
    Prion; 2012; 6(4):391-9. PubMed ID: 22561191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yeast prion protein New1 can break Sup35 amyloid fibrils into fragments in an ATP-dependent manner.
    Inoue Y; Kawai-Noma S; Koike-Takeshita A; Taguchi H; Yoshida M
    Genes Cells; 2011 May; 16(5):545-56. PubMed ID: 21453424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Q-Rich Yeast Prion [
    Verma M; Girdhar A; Patel B; Ganguly NK; Kukreti R; Taneja V
    Front Mol Neurosci; 2018; 11():75. PubMed ID: 29593496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes.
    Harrison PM; Gerstein M
    Genome Biol; 2003; 4(6):R40. PubMed ID: 12801414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions.
    Derkatch IL; Liebman SW
    Prion; 2013; 7(4):294-300. PubMed ID: 23924684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Glutamine/Asparagine-Rich Fragment of Gln3, but not the Full-Length Protein, Aggregates in Saccharomyces cerevisiae.
    Antonets KS; Sargsyan HM; Nizhnikov AA
    Biochemistry (Mosc); 2016 Apr; 81(4):407-13. PubMed ID: 27293098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Mutations on the Aggregation Propensity of the Human Prion-Like Protein hnRNPA2B1.
    Paul KR; Molliex A; Cascarina S; Boncella AE; Taylor JP; Ross ED
    Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28137911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains.
    Espinosa Angarica V; Ventura S; Sancho J
    BMC Genomics; 2013 May; 14():316. PubMed ID: 23663289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fitting yeast and mammalian prion aggregation kinetic data with the Finke-Watzky two-step model of nucleation and autocatalytic growth.
    Watzky MA; Morris AM; Ross ED; Finke RG
    Biochemistry; 2008 Oct; 47(40):10790-800. PubMed ID: 18785757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entropic Bristles Tune the Seeding Efficiency of Prion-Nucleating Fragments.
    Michiels E; Liu S; Gallardo R; Louros N; Mathelié-Guinlet M; Dufrêne Y; Schymkowitz J; Vorberg I; Rousseau F
    Cell Rep; 2020 Feb; 30(8):2834-2845.e3. PubMed ID: 32101755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.