BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26555180)

  • 1. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks.
    Breiman A; Fieulaine S; Meinnel T; Giglione C
    Biochim Biophys Acta; 2016 May; 1864(5):531-50. PubMed ID: 26555180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Elongation, Co-translational Folding and Targeting.
    Rodnina MV; Wintermeyer W
    J Mol Biol; 2016 May; 428(10 Pt B):2165-85. PubMed ID: 27038507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence.
    Raue U; Oellerer S; Rospert S
    J Biol Chem; 2007 Mar; 282(11):7809-16. PubMed ID: 17229726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein quality control at the ribosome: focus on RAC, NAC and RQC.
    Gamerdinger M
    Essays Biochem; 2016 Oct; 60(2):203-212. PubMed ID: 27744336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-translational mechanisms of protein maturation.
    Gloge F; Becker AH; Kramer G; Bukau B
    Curr Opin Struct Biol; 2014 Feb; 24():24-33. PubMed ID: 24721450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Identification of Co-Translational Interaction Networks by Selective Ribosome Profiling.
    Venezian J; Zilberman H; Shiber A
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34694292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins.
    Kramer G; Boehringer D; Ban N; Bukau B
    Nat Struct Mol Biol; 2009 Jun; 16(6):589-97. PubMed ID: 19491936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome crystallography: catalysis and evolution of peptide-bond formation, nascent chain elongation and its co-translational folding.
    Bashan A; Yonath A
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):488-92. PubMed ID: 15916549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosome pausing, a dangerous necessity for co-translational events.
    Collart MA; Weiss B
    Nucleic Acids Res; 2020 Feb; 48(3):1043-1055. PubMed ID: 31598688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding at the birth of the nascent chain: coordinating translation with co-translational folding.
    Zhang G; Ignatova Z
    Curr Opin Struct Biol; 2011 Feb; 21(1):25-31. PubMed ID: 21111607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing and specificity of cotranslational nascent protein modification in bacteria.
    Yang CI; Hsieh HH; Shan SO
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23050-23060. PubMed ID: 31666319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-translational protein folding: progress and methods.
    Thommen M; Holtkamp W; Rodnina MV
    Curr Opin Struct Biol; 2017 Feb; 42():83-89. PubMed ID: 27940242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the folding characteristics of free and ribosome-tethered polypeptide chains using limited proteolysis and mass spectrometry.
    Rajabi K; Reuther J; Deuerling E; Radford SE; Ashcroft AE
    Protein Sci; 2015 Aug; 24(8):1282-91. PubMed ID: 25970093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosome. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo.
    Goldman DH; Kaiser CM; Milin A; Righini M; Tinoco I; Bustamante C
    Science; 2015 Apr; 348(6233):457-60. PubMed ID: 25908824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling co-translational protein folding: Concepts and methods.
    Komar AA
    Methods; 2018 Mar; 137():71-81. PubMed ID: 29221924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-translational folding of nascent polypeptides: Multi-layered mechanisms for the efficient biogenesis of functional proteins.
    Maciuba K; Rajasekaran N; Chen X; Kaiser CM
    Bioessays; 2021 Jul; 43(7):e2100042. PubMed ID: 33987870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling.
    Wilson DN; Beckmann R
    Curr Opin Struct Biol; 2011 Apr; 21(2):274-82. PubMed ID: 21316217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal protein modifications: Bringing back into play the ribosome.
    Giglione C; Fieulaine S; Meinnel T
    Biochimie; 2015 Jul; 114():134-46. PubMed ID: 25450248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis.
    Minoia M; Quintana-Cordero J; Jetzinger K; Kotan IE; Turnbull KJ; Ciccarelli M; Masser AE; Liebers D; Gouarin E; Czech M; Hauryliuk V; Bukau B; Kramer G; Andréasson C
    Nat Commun; 2024 Feb; 15(1):1382. PubMed ID: 38360885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.