These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 26555324)

  • 1. Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method.
    Roveri DS; Sant'Anna GM; Bertan HH; Mologni JF; Alves MAR; Braga ES
    Ultramicroscopy; 2016 Jan; 160():247-251. PubMed ID: 26555324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field emitter electrostatics: a review with special emphasis on modern high-precision finite-element modelling.
    de Assis TA; Dall'Agnol FF; Forbes RG
    J Phys Condens Matter; 2022 Oct; 34(49):. PubMed ID: 36103867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some comments on models for field enhancement.
    Forbes RG; Edgcombe CJ; Valdrè U
    Ultramicroscopy; 2003; 95(1-4):57-65. PubMed ID: 12535545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field enhancement induced by surface defects in two-dimensional ReSe
    Giubileo F; Faella E; Capista D; Passacantando M; Durante O; Kumar A; Pelella A; Intonti K; Viscardi L; De Stefano S; Martucciello N; Craciun MF; Russo S; Di Bartolomeo A
    Nanoscale; 2024 Sep; 16(35):16718-16728. PubMed ID: 39172122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field emission characteristics of point emitters fabricated by a multiwalled carbon nanotube yarn.
    Chen G; Shin DH; Roth S; Lee CJ
    Nanotechnology; 2009 Aug; 20(31):315201. PubMed ID: 19597242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry.
    Verhey JF; Nathan NS; Rienhoff O; Kikinis R; Rakebrandt F; D'Ambra MN
    Biomed Eng Online; 2006 Mar; 5():17. PubMed ID: 16512925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full three-dimensional power flow analysis of single-emitter-plasmonic-nanoantenna system.
    Kim J; Song JH; Jeong KY; Ee HS; Seo MK
    Opt Express; 2015 May; 23(9):11080-91. PubMed ID: 25969204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods and framework for visualizing higher-order finite elements.
    Schroeder WJ; Bertel F; Malaterre M; Thompson D; Pébay PP; O'Bara R; Tendulkar S
    IEEE Trans Vis Comput Graph; 2006; 12(4):446-60. PubMed ID: 16805255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emission efficiency dependence on the width and thickness of nanogaps in surface-conduction electron-emitter displays.
    Li Y; Lo HY
    J Nanosci Nanotechnol; 2009 May; 9(5):3271-7. PubMed ID: 19453003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anode distance effect on field electron emission from carbon nanotubes: a molecular/quantum mechanical simulation.
    He C; Wang W; Deng S; Xu N; Li Z; Chen G; Peng J
    J Phys Chem A; 2009 Jun; 113(25):7048-53. PubMed ID: 19534558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers.
    Chen Y; Miao HY; Lin RJ; Zhang M; Liang R; Zhang C; Wang B
    Nanotechnology; 2010 Dec; 21(49):495702. PubMed ID: 21071825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of single quantum emitter and dark plasmon supported by a metal nanoring.
    Deinega A; Seideman T
    J Chem Phys; 2014 Jun; 140(23):234311. PubMed ID: 24952545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips.
    Bao W; Staffaroni M; Bokor J; Salmeron MB; Yablonovitch E; Cabrini S; Weber-Bargioni A; Schuck PJ
    Opt Express; 2013 Apr; 21(7):8166-76. PubMed ID: 23571906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann scheme for electrolytes by an extended Maxwell-Stefan approach.
    Zudrop J; Roller S; Asinari P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053310. PubMed ID: 25353917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of blade-like field emitters.
    Filippov SV; Dall'Agnol FF; de Assis TA; Popov EO; Kolosko AG
    Ultramicroscopy; 2022 Mar; 233():113462. PubMed ID: 34998119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power flow from a dipole emitter near an optical antenna.
    Huang KC; Jun YC; Seo MK; Brongersma ML
    Opt Express; 2011 Sep; 19(20):19084-92. PubMed ID: 21996849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An RF phased array applicator designed for hyperthermia breast cancer treatments.
    Wu L; McGough RJ; Arabe OA; Samulski TV
    Phys Med Biol; 2006 Jan; 51(1):1-20. PubMed ID: 16357427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters.
    Kim HY; Jeong S; Jeong SY; Baeg KJ; Han JT; Jeong MS; Lee GW; Jeong HJ
    Nanoscale; 2015 Mar; 7(12):5495-502. PubMed ID: 25732480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the work function of a carbon-cone cold-field emitter by in situ electron holography.
    de Knoop L; Houdellier F; Gatel C; Masseboeuf A; Monthioux M; Hÿtch M
    Micron; 2014 Aug; 63():2-8. PubMed ID: 24702951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.