These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26555557)

  • 21. Highly Performance Core-Shell TiO
    Yang G; Ding H; Feng J; Hao Q; Sun S; Ao W; Chen D
    Sci Rep; 2017 Nov; 7(1):14594. PubMed ID: 29109444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation.
    Kitano M; Funatsu K; Matsuoka M; Ueshima M; Anpo M
    J Phys Chem B; 2006 Dec; 110(50):25266-72. PubMed ID: 17165971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Cu₂O nanospheres decorated with TiO₂ nanoislands, their enhanced photoactivity and stability under visible light illumination, and their post-illumination catalytic memory.
    Liu L; Yang W; Li Q; Gao S; Shang JK
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5629-39. PubMed ID: 24673595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nano Anatase TiO
    Yu S; Han B; Lou Y; Qian G; Wang Z
    Inorg Chem; 2020 Mar; 59(5):3330-3339. PubMed ID: 32058697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Core-Shell Structured Phenolic Polymer@TiO
    Xu X; Zhang L; Zhang S; Wang Y; Liu B; Ren Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32150857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis.
    Yoshida T; Niimi S; Yamamoto M; Nomoto T; Yagi S
    J Colloid Interface Sci; 2015 Jun; 447():278-81. PubMed ID: 25670537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective aerobic oxidation mediated by TiO(2) photocatalysis.
    Lang X; Ma W; Chen C; Ji H; Zhao J
    Acc Chem Res; 2014 Feb; 47(2):355-63. PubMed ID: 24164388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembly of TiO
    Liu J; Wen M; Chen H; Li J; Wu QS
    Chempluschem; 2014 Feb; 79(2):298-303. PubMed ID: 31986587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering the Au-Cu
    Xu W; Xiao R; An S; Li C; Ding J; Chen H; Yang HB; Feng Y
    Small; 2023 Jul; 19(29):e2300587. PubMed ID: 37035961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation.
    Zhang J; Zhu H; Zheng S; Pan F; Wang T
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2111-4. PubMed ID: 20355842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unravelling the interfacial interaction in mesoporous SiO
    Mutuma BK; Mathebula X; Nongwe I; Mtolo BP; Matsoso BJ; Erasmus R; Tetana Z; Coville NJ
    Beilstein J Nanotechnol; 2020; 11():1834-1846. PubMed ID: 33364142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stable and Flexible CuInS2/ZnS:Al-TiO2 Film for Solar-Light-Driven Photodegradation of Soil Fumigant.
    Yan L; Li Z; Sun M; Shen G; Li L
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20048-56. PubMed ID: 27414776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Facet-Dependent Photocatalytic Properties of Cu2 O Crystals Established through the Formation of Au-Decorated Cu2 O Heterostructures.
    Yuan GZ; Hsia CF; Lin ZW; Chiang C; Chiang YW; Huang MH
    Chemistry; 2016 Aug; 22(35):12548-56. PubMed ID: 27470656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable Aqueous Photoelectrochemical CO2 Reduction by a Cu2 O Dark Cathode with Improved Selectivity for Carbonaceous Products.
    Chang X; Wang T; Zhang P; Wei Y; Zhao J; Gong J
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8840-5. PubMed ID: 27199242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient ZnO-based visible-light-driven photocatalyst for antibacterial applications.
    Kumar R; Anandan S; Hembram K; Rao TN
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13138-48. PubMed ID: 25029041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production.
    Babu SG; Vinoth R; Kumar DP; Shankar MV; Chou HL; Vinodgopal K; Neppolian B
    Nanoscale; 2015 May; 7(17):7849-57. PubMed ID: 25853995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stable Water Oxidation in Acid Using Manganese-Modified TiO
    Siddiqi G; Luo Z; Xie Y; Pan Z; Zhu Q; Röhr JA; Cha JJ; Hu S
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18805-18815. PubMed ID: 29668253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new route for the fabrication of an ultrathin film of a PdO-TiO2 composite photocatalyst.
    Choudhury S; Sasikala R; Saxena V; Aswal DK; Bhattacharya D
    Dalton Trans; 2012 Oct; 41(39):12090-5. PubMed ID: 22914847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of Electron Injection in SnO2/TiO2 Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells.
    McCool NS; Swierk JR; Nemes CT; Schmuttenmaer CA; Mallouk TE
    J Phys Chem Lett; 2016 Aug; 7(15):2930-4. PubMed ID: 27414977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW(12)O(40)(3-) vs TiO(2).
    Kim S; Park H; Choi W
    J Phys Chem B; 2004 May; 108(20):6402-11. PubMed ID: 18950128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.