These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 26555574)
1. Environmentally Robust Rhodamine Reporters for Probe-based Cellular Detection of the Cancer-linked Oxidoreductase hNQO1. Best QA; Johnson AE; Prasai B; Rouillere A; McCarley RL ACS Chem Biol; 2016 Jan; 11(1):231-40. PubMed ID: 26555574 [TBL] [Abstract][Full Text] [Related]
2. Oxidoreductase-Facilitated Visualization and Detection of Human Cancer Cells. Prasai B; Silvers WC; McCarley RL Anal Chem; 2015 Jun; 87(12):6411-8. PubMed ID: 26005900 [TBL] [Abstract][Full Text] [Related]
3. An efficient two-photon fluorescent probe for human NAD(P)H:quinone oxidoreductase (hNQO1) detection and imaging in tumor cells. Kwon N; Cho MK; Park SJ; Kim D; Nam SJ; Cui L; Kim HM; Yoon J Chem Commun (Camb); 2017 Jan; 53(3):525-528. PubMed ID: 27959364 [TBL] [Abstract][Full Text] [Related]
4. Cancer-Specific hNQO1-Responsive Biocompatible Naphthalimides Providing a Rapid Fluorescent Turn-On with an Enhanced Enzyme Affinity. Park SY; Jung E; Kim JS; Chi SG; Lee MH Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861836 [TBL] [Abstract][Full Text] [Related]
5. A Near-Infrared, Wavelength-Shiftable, Turn-on Fluorescent Probe for the Detection and Imaging of Cancer Tumor Cells. Shen Z; Prasai B; Nakamura Y; Kobayashi H; Jackson MS; McCarley RL ACS Chem Biol; 2017 Apr; 12(4):1121-1132. PubMed ID: 28240865 [TBL] [Abstract][Full Text] [Related]
6. Hemicyanine-based near-infrared fluorescent probe for the ultrasensitive detection of hNQO1 activity and discrimination of human cancer cells. Zheng Y; Pan D; Zhang Y; Zhang Y; Shen Y Anal Chim Acta; 2019 Dec; 1090():125-132. PubMed ID: 31655637 [TBL] [Abstract][Full Text] [Related]
7. New latent fluorophore for DT diaphorase. Huang ST; Lin YL Org Lett; 2006 Jan; 8(2):265-8. PubMed ID: 16408891 [TBL] [Abstract][Full Text] [Related]
8. Near-infrared fluorescent probe based on rhodamine derivative for detection of NADH in live cells. Zhang Y; Arachchige DL; Olowolagba A; Luck RL; Liu H Methods; 2022 Aug; 204():22-28. PubMed ID: 35381337 [TBL] [Abstract][Full Text] [Related]
9. Efficacious fluorescence turn-on probe for high-contrast imaging of human cells overexpressing quinone reductase activity. Best QA; Prasai B; Rouillere A; Johnson AE; McCarley RL Chem Commun (Camb); 2017 Jan; 53(4):783-786. PubMed ID: 28000803 [TBL] [Abstract][Full Text] [Related]
10. Profluorogenic reductase substrate for rapid, selective, and sensitive visualization and detection of human cancer cells that overexpress NQO1. Silvers WC; Prasai B; Burk DH; Brown ML; McCarley RL J Am Chem Soc; 2013 Jan; 135(1):309-14. PubMed ID: 23198810 [TBL] [Abstract][Full Text] [Related]
11. Substituent effects on the turn-on kinetics of rhodamine-based fluorescent pH probes. Czaplyski WL; Purnell GE; Roberts CA; Allred RM; Harbron EJ Org Biomol Chem; 2014 Jan; 12(3):526-33. PubMed ID: 24287714 [TBL] [Abstract][Full Text] [Related]
12. A novel two-photon fluorescent probe with a long Stokes shift and a high signal-to-background ratio for human NAD(P)H:quinone oxidoreductase 1 (hNQO1) detection and imaging in living cells and tissues. Pan D; Luo F; Liu X; Liu W; Chen W; Liu F; Kuang YQ; Jiang JH Analyst; 2017 Jul; 142(14):2624-2630. PubMed ID: 28608874 [TBL] [Abstract][Full Text] [Related]
13. An Activatable Photosensitizer Targeting Human NAD(P)H: Quinone Oxidoreductase 1. Digby EM; Sadovski O; Beharry AA Chemistry; 2020 Feb; 26(12):2713-2718. PubMed ID: 31814180 [TBL] [Abstract][Full Text] [Related]
14. Rhodamine cyclic hydrazide as a fluorescent probe for the detection of hydroxyl radicals. Kim M; Ko SK; Kim H; Shin I; Tae J Chem Commun (Camb); 2013 Sep; 49(72):7959-61. PubMed ID: 23903522 [TBL] [Abstract][Full Text] [Related]
15. Affinity-based small fluorescent probe for NAD(P)H:quinone oxidoreductase 1 (NQO1). Design, synthesis and pharmacological evaluation. Bian J; Li X; Xu L; Wang N; Qian X; You Q; Zhang X Eur J Med Chem; 2017 Feb; 127():828-839. PubMed ID: 27829520 [TBL] [Abstract][Full Text] [Related]
16. A general method to optimize and functionalize red-shifted rhodamine dyes. Grimm JB; Tkachuk AN; Xie L; Choi H; Mohar B; Falco N; Schaefer K; Patel R; Zheng Q; Liu Z; Lippincott-Schwartz J; Brown TA; Lavis LD Nat Methods; 2020 Aug; 17(8):815-821. PubMed ID: 32719532 [TBL] [Abstract][Full Text] [Related]
17. Rhodamine-based "turn-on" fluorescent probe with high selectivity for Fe(2+) imaging in living cells. Hou GG; Wang CH; Sun JF; Yang MZ; Lin D; Li HJ Biochem Biophys Res Commun; 2013 Oct; 439(4):459-63. PubMed ID: 24025683 [TBL] [Abstract][Full Text] [Related]
18. Human NAD(P)H:quinone oxidoreductase type I (hNQO1) activation of quinone propionic acid trigger groups. Mendoza MF; Hollabaugh NM; Hettiarachchi SU; McCarley RL Biochemistry; 2012 Oct; 51(40):8014-26. PubMed ID: 22989153 [TBL] [Abstract][Full Text] [Related]
19. Silicon Rhodamine-Based Near-Infrared Fluorescent Probe for γ-Glutamyltransferase. Iwatate RJ; Kamiya M; Umezawa K; Kashima H; Nakadate M; Kojima R; Urano Y Bioconjug Chem; 2018 Feb; 29(2):241-244. PubMed ID: 29323873 [TBL] [Abstract][Full Text] [Related]
20. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes. Cui K; Ma Q; Lu AY; Yang CS Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]