These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26555755)

  • 1. Fractional Brownian motion and multivariate-t models for longitudinal biomedical data, with application to CD4 counts in HIV-positive patients.
    Stirrup OT; Babiker AG; Carpenter JR; Copas AJ
    Stat Med; 2016 Apr; 35(9):1514-32. PubMed ID: 26555755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined models for pre- and post-treatment longitudinal biomarker data: an application to CD4 counts in HIV-patients.
    Stirrup OT; Babiker AG; Copas AJ
    BMC Med Res Methodol; 2016 Sep; 16():121. PubMed ID: 27633882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Misspecifying the covariance structure in a linear mixed model under MAR drop-out.
    Thomadakis C; Meligkotsidou L; Pantazis N; Touloumi G
    Stat Med; 2020 Oct; 39(23):3027-3041. PubMed ID: 32452081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint longitudinal data analysis in detecting determinants of CD4 cell count change and adherence to highly active antiretroviral therapy at Felege Hiwot Teaching and Specialized Hospital, North-west Ethiopia (Amhara Region).
    Seyoum A; Ndlovu P; Temesgen Z
    AIDS Res Ther; 2017 Mar; 14(1):14. PubMed ID: 28302125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the covariance structure matter in longitudinal modelling for the prediction of future CD4 counts?
    Taylor JM; Law N
    Stat Med; 1998 Oct; 17(20):2381-94. PubMed ID: 9819834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal models for AIDS marker data.
    Boscardin WJ; Taylor JM; Law N
    Stat Methods Med Res; 1998 Mar; 7(1):13-27. PubMed ID: 9533259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stochastic model for the analysis of bivariate longitudinal AIDS data.
    Sy JP; Taylor JM; Cumberland WG
    Biometrics; 1997 Jun; 53(2):542-55. PubMed ID: 9192450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation and comparison of rates of change in longitudinal studies with informative drop-outs.
    Touloumi G; Pocock SJ; Babiker AG; Darbyshire JH
    Stat Med; 1999 May; 18(10):1215-33. PubMed ID: 10363341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques.
    Griesbach C; Groll A; Bergherr E
    Comput Math Methods Med; 2021; 2021():4384035. PubMed ID: 34819988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models for empirical Bayes estimators of longitudinal CD4 counts.
    LaValley MP; DeGruttola V
    Stat Med; 1996 Nov 15-30; 15(21-22):2289-305; discussion 2337-40. PubMed ID: 8931202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing linear CD4 decline quantifying diagnosis delay after HIV seroconversion: assessing the linearity assumption of CD4 decline.
    Robertson MM; Braunstein SL; Hoover DR; Li S; Nash D
    Ann Epidemiol; 2020 Dec; 52():1-6. PubMed ID: 32791198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in CD4 cell counts at seroconversion and decline among 5739 HIV-1-infected individuals with well-estimated dates of seroconversion.
    CASCADE Collaboration
    J Acquir Immune Defic Syndr; 2003 Sep; 34(1):76-83. PubMed ID: 14501798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian modeling of the covariance structure for irregular longitudinal data using the partial autocorrelation function.
    Su L; Daniels MJ
    Stat Med; 2015 May; 34(12):2004-18. PubMed ID: 25762065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive cross-validation for the choice of linear mixed-effects models with application to data from the Swiss HIV Cohort Study.
    Braun J; Held L; Ledergerber B
    Biometrics; 2012 Mar; 68(1):53-61. PubMed ID: 21732925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic predictions using flexible joint models of longitudinal and time-to-event data.
    Barrett J; Su L
    Stat Med; 2017 Apr; 36(9):1447-1460. PubMed ID: 28110499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of missing data due to drop-outs on estimators for rates of change in longitudinal studies: a simulation study.
    Touloumi G; Babiker AG; Pocock SJ; Darbyshire JH
    Stat Med; 2001 Dec; 20(24):3715-28. PubMed ID: 11782028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longitudinal and time-to-drop-out joint models can lead to seriously biased estimates when the drop-out mechanism is at random.
    Thomadakis C; Meligkotsidou L; Pantazis N; Touloumi G
    Biometrics; 2019 Mar; 75(1):58-68. PubMed ID: 30357814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint modelling of longitudinal and time-to-event data: an illustration using CD4 count and mortality in a cohort of patients initiated on antiretroviral therapy.
    Mchunu NN; Mwambi HG; Reddy T; Yende-Zuma N; Naidoo K
    BMC Infect Dis; 2020 Mar; 20(1):256. PubMed ID: 32228483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An application of a pattern-mixture model with multiple imputation for the analysis of longitudinal trials with protocol deviations.
    Iddrisu AK; Gumedze F
    BMC Med Res Methodol; 2019 Jan; 19(1):10. PubMed ID: 30626328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint modeling of HIV data in multicenter observational studies: A comparison among different approaches.
    Brombin C; Di Serio C; Rancoita PM
    Stat Methods Med Res; 2016 Dec; 25(6):2472-2487. PubMed ID: 24671658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.