BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 26555847)

  • 1. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.
    Sassaroli A; Kainerstorfer JM; Fantini S
    J Theor Biol; 2016 Jan; 389():132-45. PubMed ID: 26555847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS).
    Fantini S
    Neuroimage; 2014 Jan; 85 Pt 1(0 1):202-21. PubMed ID: 23583744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical steps for applying a new dynamic model to near-infrared spectroscopy measurements of hemodynamic oscillations and transient changes: implications for cerebrovascular and functional brain studies.
    Kainerstorfer JM; Sassaroli A; Hallacoglu B; Pierro ML; Fantini S
    Acad Radiol; 2014 Feb; 21(2):185-96. PubMed ID: 24439332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic microcirculation PIPE model for functional neuroimaging, non-neuroimaging, and coherent hemodynamics spectroscopy: blood volume and flow velocity variations, and vascular autoregulation.
    Xu M; Zheng Y; Chen X; Li Y; Lin W; Zeng B
    Biomed Opt Express; 2020 Aug; 11(8):4602-4626. PubMed ID: 32923067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a novel hemodynamic model for coherent hemodynamics spectroscopy (CHS) and functional brain studies with fNIRS and fMRI.
    Pierro ML; Hallacoglu B; Sassaroli A; Kainerstorfer JM; Fantini S
    Neuroimage; 2014 Jan; 85 Pt 1(0 1):222-33. PubMed ID: 23562703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth dependence of coherent hemodynamics in the human head.
    Khaksari K; Blaney G; Sassaroli A; Krishnamurthy N; Pham T; Fantini S
    J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30444084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced speed of microvascular blood flow in hemodialysis patients versus healthy controls: a coherent hemodynamics spectroscopy study.
    Pierro ML; Kainerstorfer JM; Civiletto A; Weiner DE; Sassaroli A; Hallacoglu B; Fantini S
    J Biomed Opt; 2014 Feb; 19(2):026005. PubMed ID: 24522805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy.
    Kainerstorfer JM; Sassaroli A; Tgavalekos KT; Fantini S
    J Cereb Blood Flow Metab; 2015 Jun; 35(6):959-66. PubMed ID: 25669906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-compartment model of the hemodynamic response and oxygen delivery to brain.
    Zheng Y; Johnston D; Berwick J; Chen D; Billings S; Mayhew J
    Neuroimage; 2005 Dec; 28(4):925-39. PubMed ID: 16061400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen diffusion in a network model of the myocardial microcirculation.
    Wieringa PA; Stassen HG; Van Kan JJ; Spaan JA
    Int J Microcirc Clin Exp; 1993 Oct; 13(2):137-69. PubMed ID: 8307707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A haemodynamic model for the physiological interpretation of in vivo measurements of the concentration and oxygen saturation of haemoglobin.
    Fantini S
    Phys Med Biol; 2002 Sep; 47(18):N249-57. PubMed ID: 12375832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Very-low-frequency oscillations of cerebral hemodynamics and blood pressure are affected by aging and cognitive load.
    Vermeij A; Meel-van den Abeelen AS; Kessels RP; van Beek AH; Claassen JA
    Neuroimage; 2014 Jan; 85 Pt 1():608-15. PubMed ID: 23660026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction.
    Andropoulos DB; Stayer SA; McKenzie ED; Fraser CD
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):491-9. PubMed ID: 12658190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution.
    Laufer J; Elwell C; Delpy D; Beard P
    Phys Med Biol; 2005 Sep; 50(18):4409-28. PubMed ID: 16148401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phasor representation of oxy- and deoxyhemoglobin concentrations: what is the meaning of out-of-phase oscillations as measured by near-infrared spectroscopy?
    Zheng F; Sassaroli A; Fantini S
    J Biomed Opt; 2010; 15(4):040512. PubMed ID: 20799778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans.
    Huppert TJ; Hoge RD; Diamond SG; Franceschini MA; Boas DA
    Neuroimage; 2006 Jan; 29(2):368-82. PubMed ID: 16303317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new hemodynamic model shows that temporal perturbations of cerebral blood flow and metabolic rate of oxygen cannot be measured individually using functional near-infrared spectroscopy.
    Fantini S
    Physiol Meas; 2014 Jan; 35(1):N1-9. PubMed ID: 24346036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unloading oxygen in a capillary vessel under a pathological condition.
    Escobar C; Méndez F
    Math Biosci; 2008 Oct; 215(2):127-36. PubMed ID: 18694766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation analysis between prefrontal oxygenation oscillations and cerebral artery hemodynamics in humans.
    Li Z; Zhang M; Xin Q; Li J; Chen G; Liu F; Li J
    Microvasc Res; 2011 Nov; 82(3):304-10. PubMed ID: 21875605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.