BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 2655591)

  • 1. A peptide substrate for Escherichia coli protein kinase activity in vitro.
    Dadssi M; Duclos B; Cozzone AJ
    Biochem Biophys Res Commun; 1989 Apr; 160(2):552-8. PubMed ID: 2655591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro phosphorylation of a synthetic collagen peptide by cyclic AMP-dependent protein kinase.
    Glass DB; May JM
    Coll Relat Res; 1984 Jan; 4(1):63-74. PubMed ID: 6327183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that Ser-82 is a unique phosphorylation site on vimentin for Ca2(+)-calmodulin-dependent protein kinase II.
    Ando S; Tokui T; Yamauchi T; Sugiura H; Tanabe K; Inagaki M
    Biochem Biophys Res Commun; 1991 Mar; 175(3):955-62. PubMed ID: 1850997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple arginine residues contribute to the increased efficacy of peptide substrates for the cAMP-dependent protein kinase.
    Prorok M; Lawrence DS
    Biochem Biophys Res Commun; 1989 Nov; 165(1):368-71. PubMed ID: 2590233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of gastrin-related peptides: physiological casein kinase like enzyme in Golgi membranes from bovine adrenal chromaffin cells and GH3 cells.
    Vegh M; Varro A
    Regul Pept; 1997 Jan; 68(1):37-43. PubMed ID: 9094753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The substrate specificity of adenosine 3':5'-cyclic monophosphate-dependent protein kinase of rabbit skeletal muscle.
    Yeaman SJ; Cohen P; Watson DC; Dixon GH
    Biochem J; 1977 Feb; 162(2):411-21. PubMed ID: 192223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the mechanism of phosphorylation of synthetic polypeptides by a calf thymus cyclic AMP-dependent protein kinase.
    Pomerantz AH; Allfrey VG; Merrifield RB; Johnson EM
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4261-5. PubMed ID: 200911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonucleotide reductase R2 protein is phosphorylated at serine-20 by P34cdc2 kinase.
    Chan AK; Persad S; Litchfield DW; Wright JA
    Biochim Biophys Acta; 1999 Jan; 1448(3):363-71. PubMed ID: 9990288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of multi-site phosphorylation of peptide analogues of ribosomal protein S6 by novel protease-activated protein kinases.
    Wettenhall RE; Gabrielli B; Morrice N; Bozinova L; Kemp BE; Stapleton D
    Pept Res; 1991; 4(3):158-70. PubMed ID: 1823186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of N-methylated peptides and depsipeptides to probe the binding of heptapeptide substrates to cAMP-dependent protein kinase.
    Bramson HN; Thomas NE; Kaiser ET
    J Biol Chem; 1985 Dec; 260(29):15452-7. PubMed ID: 4066678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of the substrate specificity of insulin-stimulated protein kinase-1, a mammalian homologue of S6 kinase-II.
    Donella-Deana A; Lavoinne A; Marin O; Pinna LA; Cohen P
    Biochim Biophys Acta; 1993 Aug; 1178(2):189-93. PubMed ID: 8347677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic hexapeptide substrates and inhibitors of 3':5'-cyclic AMP-dependent protein kinase.
    Kemp BE; Benjamini E; Krebs EG
    Proc Natl Acad Sci U S A; 1976 Apr; 73(4):1038-42. PubMed ID: 177970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further definition of the substrate specificity of the alpha-herpesvirus protein kinase and comparison with protein kinases A and C.
    Leader DP; Deana AD; Marchiori F; Purves FC; Pinna LA
    Biochim Biophys Acta; 1991 Feb; 1091(3):426-31. PubMed ID: 1848111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cyclic AMP-dependent protein kinase from bovine cardiac muscle is a homoserine kinase.
    Prorok M; Sukumaran DK; Lawrence DS
    J Biol Chem; 1989 Oct; 264(30):17727-33. PubMed ID: 2553690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The comparative efficiencies of the Ser(P)-, Thr(P)- and Tyr(P)-residues as specificity determinants for casein kinase-1.
    Meggio F; Perich JW; Marin O; Pinna LA
    Biochem Biophys Res Commun; 1992 Feb; 182(3):1460-5. PubMed ID: 1540189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-length myotonin protein kinase (72 kDa) displays serine kinase activity.
    Timchenko L; Nastainczyk W; Schneider T; Patel B; Hofmann F; Caskey CT
    Proc Natl Acad Sci U S A; 1995 Jun; 92(12):5366-70. PubMed ID: 7777513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the substrate specificity of sucrose-phosphate synthase protein kinase.
    McMichael RW; Kochansky J; Klein RR; Huber SC
    Arch Biochem Biophys; 1995 Aug; 321(1):71-5. PubMed ID: 7639538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of basic residues in the phosphorylation of synthetic peptides by myosin light chain kinase.
    Kemp BE; Pearson RB; House C
    Proc Natl Acad Sci U S A; 1983 Dec; 80(24):7471-5. PubMed ID: 6584865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of a tyrosine protein kinase from calf thymus. Response to ionic strength and divalent cations.
    Mason DL; Harrison ML; Geahlen RL
    Biochim Biophys Acta; 1985 Jun; 829(2):221-8. PubMed ID: 3873256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells.
    Grankowski N; Gasior E; Issinger OG
    Biochim Biophys Acta; 1993 Oct; 1158(2):194-6. PubMed ID: 8399321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.