BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 26555941)

  • 1. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis.
    Zhang Y; Xiao RR; Yin T; Zou W; Tang Y; Ding J; Yang J
    PLoS One; 2015; 10(11):e0142555. PubMed ID: 26555941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa.
    Teves ME; Barbano F; Guidobaldi HA; Sanchez R; Miska W; Giojalas LC
    Fertil Steril; 2006 Sep; 86(3):745-9. PubMed ID: 16784744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, Fabrication, and Testing of a Microfluidic Device for Thermotaxis and Chemotaxis Assays of Sperm.
    Ko YJ; Maeng JH; Hwang SY; Ahn Y
    SLAS Technol; 2018 Dec; 23(6):507-515. PubMed ID: 29949396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control.
    Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F
    Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed microfluidic screening of bacterial chemotaxis.
    Stehnach MR; Henshaw RJ; Floge SA; Guasto JS
    Elife; 2023 Jul; 12():. PubMed ID: 37486823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different migration patterns of sea urchin and mouse sperm revealed by a microfluidic chemotaxis device.
    Chang H; Kim BJ; Kim YS; Suarez SS; Wu M
    PLoS One; 2013; 8(4):e60587. PubMed ID: 23613731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of progressive motile sperm from mouse semen using on-chip chemotaxis.
    Ko YJ; Maeng JH; Lee BC; Lee S; Hwang SY; Ahn Y
    Anal Sci; 2012; 28(1):27-32. PubMed ID: 22232220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fully integrated biomimetic microfluidic device for evaluation of sperm response to thermotaxis and chemotaxis.
    Yan Y; Zhang B; Fu Q; Wu J; Liu R
    Lab Chip; 2021 Jan; 21(2):310-318. PubMed ID: 33444427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotaxis assays of mouse sperm on microfluidic devices.
    Koyama S; Amarie D; Soini HA; Novotny MV; Jacobson SC
    Anal Chem; 2006 May; 78(10):3354-9. PubMed ID: 16689537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-Free Microfluidic Device for Quantifying Chemotaxis in Spermatozoa.
    Berendsen JTW; Kruit SA; Atak N; Willink E; Segerink LI
    Anal Chem; 2020 Feb; 92(4):3302-3306. PubMed ID: 31994387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device.
    Matsuura K; Takenami M; Kuroda Y; Hyakutake T; Yanase S; Naruse K
    Reprod Biomed Online; 2012 Jan; 24(1):109-15. PubMed ID: 22116072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients.
    Sule N; Penarete-Acosta D; Englert DL; Jayaraman A
    Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
    Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS
    Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutrophil migration under spatially-varying chemoattractant gradient profiles.
    Halilovic I; Wu J; Alexander M; Lin F
    Biomed Microdevices; 2015; 17(3):9963. PubMed ID: 25998723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method.
    Phiphattanaphiphop C; Leksakul K; Phatthanakun R; Khamlor T
    Sci Rep; 2020 Oct; 10(1):17143. PubMed ID: 33051512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progesterone induces human sperm chemotaxis.
    Villanueva-Díaz C; Arias-Martínez J; Bermejo-Martínez L; Vadillo-Ortega F
    Fertil Steril; 1995 Dec; 64(6):1183-8. PubMed ID: 7589674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of sperm chemokinesis with exposure to jelly coats of sea urchin eggs and resact: a microfluidic experiment and numerical study.
    Inamdar MV; Kim T; Chung YK; Was AM; Xiang X; Wang CW; Takayama S; Lastoskie CM; Thomas FI; Sastry AM
    J Exp Biol; 2007 Nov; 210(Pt 21):3805-20. PubMed ID: 17951422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Picomolar gradients of progesterone select functional human sperm even in subfertile samples.
    Gatica LV; Guidobaldi HA; Montesinos MM; Teves ME; Moreno AI; Uñates DR; Molina RI; Giojalas LC
    Mol Hum Reprod; 2013 Sep; 19(9):559-69. PubMed ID: 23729411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of microfluidic devices in studies of differential sperm chemotaxis.
    Penny JA; Lymbery RA; Evans JP; Sherman CDH; Conlan XA
    Trends Biotechnol; 2022 Oct; 40(10):1144-1147. PubMed ID: 35902284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.