BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 26556173)

  • 1. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and engineering of a man-made diffusive electron-transport protein.
    Fry BA; Solomon LA; Leslie Dutton P; Moser CC
    Biochim Biophys Acta; 2016 May; 1857(5):513-521. PubMed ID: 26423266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer activity of a de novo designed copper center in a three-helix bundle fold.
    Plegaria JS; Herrero C; Quaranta A; Pecoraro VL
    Biochim Biophys Acta; 2016 May; 1857(5):522-530. PubMed ID: 26427552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First principles design of a core bioenergetic transmembrane electron-transfer protein.
    Goparaju G; Fry BA; Chobot SE; Wiedman G; Moser CC; Leslie Dutton P; Discher BM
    Biochim Biophys Acta; 2016 May; 1857(5):503-512. PubMed ID: 26672896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of dinuclear manganese cofactors for bacterial reaction centers.
    Olson TL; Espiritu E; Edwardraja S; Simmons CR; Williams JC; Ghirlanda G; Allen JP
    Biochim Biophys Acta; 2016 May; 1857(5):539-547. PubMed ID: 26392146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heme redox potential control in de novo designed four-alpha-helix bundle proteins.
    Shifman JM; Gibney BR; Sharp RE; Dutton PL
    Biochemistry; 2000 Dec; 39(48):14813-21. PubMed ID: 11101297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing a man-made c-type cytochrome maquette
    Anderson JLR; Armstrong CT; Kodali G; Lichtenstein BR; Watkins DW; Mancini JA; Boyle AL; Farid TA; Crump MP; Moser CC; Dutton PL
    Chem Sci; 2014 Feb; 5(2):507-514. PubMed ID: 24634717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases.
    Cartron ML; Roldán MD; Ferguson SJ; Berks BC; Richardson DJ
    Biochem J; 2002 Dec; 368(Pt 2):425-32. PubMed ID: 12186631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Rhodobacter sphaeroides cytochrome c(2) proteins with altered heme attachment sites.
    Ríos-Velázquez C; Cox RL; Donohue TJ
    Arch Biochem Biophys; 2001 May; 389(2):234-44. PubMed ID: 11339813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of heme A and heme B in a designed four-helix bundle: implications for a cytochrome c oxidase maquette.
    Gibney BR; Isogai Y; Rabanal F; Reddy KS; Grosset AM; Moser CC; Dutton PL
    Biochemistry; 2000 Sep; 39(36):11041-9. PubMed ID: 10998241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histidine placement in de novo-designed heme proteins.
    Gibney BR; Dutton PL
    Protein Sci; 1999 Sep; 8(9):1888-98. PubMed ID: 10493590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of four helix bundle topology on heme binding and redox properties.
    Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Elegant Four-Helical Fold in NOX and STEAP Enzymes Facilitates Electron Transport across Biomembranes-Similar Vehicle, Different Destination.
    Oosterheert W; Reis J; Gros P; Mattevi A
    Acc Chem Res; 2020 Sep; 53(9):1969-1980. PubMed ID: 32815713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamates 99 and 107 in transmembrane helix III of subunit I of cytochrome bd are critical for binding of the heme b595-d binuclear center and enzyme activity.
    Mogi T; Endou S; Akimoto S; Morimoto-Tadokoro M; Miyoshi H
    Biochemistry; 2006 Dec; 45(51):15785-92. PubMed ID: 17176101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site.
    Borisov VB; Belevich I; Bloch DA; Mogi T; Verkhovsky MI
    Biochemistry; 2008 Jul; 47(30):7907-14. PubMed ID: 18597483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of multihaem cytochromes in the respiration of nitrite in Escherichia coli and Fe(III) in Shewanella oneidensis.
    Clarke TA; Holley T; Hartshorne RS; Fredrickson JK; Zachara JM; Shi L; Richardson DJ
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1005-10. PubMed ID: 18793179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast, cheap and out of control--Insights into thermodynamic and informatic constraints on natural protein sequences from de novo protein design.
    Brisendine JM; Koder RL
    Biochim Biophys Acta; 2016 May; 1857(5):485-492. PubMed ID: 26498191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of cytochrome b562 to c-type cytochromes.
    Barker PD; Nerou EP; Freund SM; Fearnley IM
    Biochemistry; 1995 Nov; 34(46):15191-203. PubMed ID: 7578134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of recombinant multiheme cytochromes c in Wolinella succinogenes.
    Kern M; Simon J
    Methods Enzymol; 2011; 486():429-46. PubMed ID: 21185447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.