These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26556554)

  • 1. Study of secondary neutron interactions with ²³²Th, ¹²⁹I, and ¹²⁷I nuclei with the uranium assembly "QUINTA" at 2, 4, and 8 GeV deuteron beams of the JINR Nuclotron accelerator.
    Adam J; Chilap VV; Furman VI; Kadykov MG; Khushvaktov J; Pronskikh VS; Solnyshkin AA; Stegailov VI; Suchopar M; Tsoupko-Sitnikov VM; Tyutyunnikov SI; Vrzalova J; Wagner V; Zavorka L
    Appl Radiat Isot; 2016 Jan; 107():225-233. PubMed ID: 26556554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulations and experimental results on neutron production in the uranium spallation target QUINTA irradiated with 660 MeV protons.
    Khushvaktov JH; Adam J; Baldin AA; Furman WI; Gustov SA; Kish YV; Solnyshkin AA; Stegailov VI; Svoboda J; Tichy P; Tsoupko-Sitnikov VM; Tyutyunnikov SI; Vespalec R; Vrzalova J; Wagner V; Yuldashev BS; Zavorka L; Zeman M
    Appl Radiat Isot; 2018 Jul; 137():102-107. PubMed ID: 29602028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of activation methods on the Dubna experimental transmutation set-ups.
    Stoulos S; Fragopoulou M; Adloff JC; Debeauvais M; Brandt R; Westmeier W; Krivopustov M; Sosnin A; Papastefanou C; Zamani M; Manolopoulou M
    Appl Radiat Isot; 2003 Feb; 58(2):169-75. PubMed ID: 12573315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of non-elastic reaction rates for the ADS materials in the environment of spallation neutrons produced by 1.6 GeV d-beam.
    Bhatia C; Adam J; Kumar V; Katovsky K; Majerle M; Solnyshkin AA; Tsoupko-Sitnikov VM
    Appl Radiat Isot; 2012 Jul; 70(7):1254-60. PubMed ID: 22204785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose measurements around spallation neutron sources.
    Fragopoulou M; Stoulos S; Manolopoulou M; Krivopustov M; Zamani M
    Radiat Prot Dosimetry; 2008; 132(3):277-82. PubMed ID: 18957519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements and analysis of leakage neutron spectra from multiple-slab sample assemblies comprising W,U,C, and CH
    Luo F; Han R; Chen Z; Nie Y; Sun Q; Shi F; Zhang S; Tian G; Song L; Ruan X; Ye MY
    Appl Radiat Isot; 2018 Jul; 137():123-128. PubMed ID: 29609052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron energy spectra from the laser-induced Dd,n3He reaction.
    Hilscher D; Berndt O; Enke M; Jahnke U; Nickles PV; Ruhl H; Sandner W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016414. PubMed ID: 11461417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-phantom dosimetry for the 13C(d,n)14N reaction as a source for accelerator-based BNCT.
    Burlon AA; Kreiner AJ; White SM; Blackburn BW; Gierga DP; Yanch JC
    Med Phys; 2001 May; 28(5):796-803. PubMed ID: 11393475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explosion characteristics of intense femtosecond-laser-driven water droplets.
    Schnürer M; Hilscher D; Jahnke U; Ter-Avetisyan S; Busch S; Kalachnikov M; Stiel H; Nickles PV; Sandner W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056401. PubMed ID: 15600759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams.
    Beach JL; Milavickas LR
    Med Phys; 1982; 9(1):52-9. PubMed ID: 6804771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.
    Hiraga F
    Appl Radiat Isot; 2015 Dec; 106():84-7. PubMed ID: 26235186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between radioactivity induced inside the treatment room and the undesirable thermal/resonance neutron radiation produced by linac.
    Konefał A; Orlef A; Dybek M; Maniakowski Z; Polaczek-Grelik K; Zipper W
    Phys Med; 2008 Dec; 24(4):212-8. PubMed ID: 18339569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.
    Liu HB; Brugger RM; Rorer DC; Tichler PR; Hu JP
    Med Phys; 1994 Oct; 21(10):1627-31. PubMed ID: 7869995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.
    Xu Y; Randers-Pehrson G; Turner HC; Marino SA; Geard CR; Brenner DJ; Garty G
    Radiat Res; 2015 Oct; 184(4):404-10. PubMed ID: 26414507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.
    Halfon S; Arenshtam A; Kijel D; Paul M; Weissman L; Berkovits D; Eliyahu I; Feinberg G; Kreisel A; Mardor I; Shimel G; Shor A; Silverman I; Tessler M
    Appl Radiat Isot; 2015 Dec; 106():57-62. PubMed ID: 26300076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the fluence response of the GSI neutron ball in high-energy neutron fields produced by 500 AMeV and 800 AMeV deuterons.
    Fehrenbacher G; Gutermuth F; Kozlova E; Radon T; Aumann T; Beceiro S; Le Bleis T; Boretzky K; Emling H; Johansson H; Kiselev O; Simon H; Typel S
    Radiat Prot Dosimetry; 2007; 126(1-4):497-500. PubMed ID: 17519242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light charged-particle production in 96 MeV neutron-induced reactions on carbon and oxygen.
    Tippawan U; Pomp S; Blomgren J; Dangtip S; Johansson C; Klug J; Mermod P; Nilsson L; Ohrn A; Osterlund M; Olsson N; Prokofiev AV; Nadel-Turonski P; Corcalciuc V; Koning AJ; Watanabe Y
    Radiat Prot Dosimetry; 2007; 126(1-4):35-9. PubMed ID: 17496294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.