These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 26556561)
21. Recent advances in near-infrared II imaging technology for biological detection. Zhang NN; Lu CY; Chen MJ; Xu XL; Shu GF; Du YZ; Ji JS J Nanobiotechnology; 2021 May; 19(1):132. PubMed ID: 33971910 [TBL] [Abstract][Full Text] [Related]
22. Near-Infrared-II Semiconducting Polymer Dots for Deep-tissue Fluorescence Imaging. Gupta N; Chan YH; Saha S; Liu MH Chem Asian J; 2021 Feb; 16(3):175-184. PubMed ID: 33331122 [TBL] [Abstract][Full Text] [Related]
23. Recent Progress of Near-Infrared Fluorescence in vivo Bioimaging in the Second and Third Biological Window. Kamimura M Anal Sci; 2021 May; 37(5):691-697. PubMed ID: 33455967 [TBL] [Abstract][Full Text] [Related]
25. Minimizing near-infrared autofluorescence in preclinical imaging with diet and wavelength selection. Sun Y; Zhong X; Dennis AM J Biomed Opt; 2023 Sep; 28(9):094805. PubMed ID: 37035712 [TBL] [Abstract][Full Text] [Related]
26. Sensorless adaptive optics in the second near-infrared window for deep vascular imaging in vivo. Li D; Shi T; Xiao Y; Wu C Opt Lett; 2024 Jul; 49(14):4002-4005. PubMed ID: 39008762 [TBL] [Abstract][Full Text] [Related]
27. Bright Near-Infrared π-Conjugated Oligomer Nanoparticles for Deep-Brain Three-Photon Microscopy Excited at the 1700 nm Window Li S; Deng X; Cheng H; Li X; Wan Y; Cao C; Yu J; Liu Y; Yuan Y; Wang K; Lee CS ACS Nano; 2022 Aug; 16(8):12480-12487. PubMed ID: 35968934 [TBL] [Abstract][Full Text] [Related]
28. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Hu Z; Fang C; Li B; Zhang Z; Cao C; Cai M; Su S; Sun X; Shi X; Li C; Zhou T; Zhang Y; Chi C; He P; Xia X; Chen Y; Gambhir SS; Cheng Z; Tian J Nat Biomed Eng; 2020 Mar; 4(3):259-271. PubMed ID: 31873212 [TBL] [Abstract][Full Text] [Related]
29. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. Tsai MF; Chang SH; Cheng FY; Shanmugam V; Cheng YS; Su CH; Yeh CS ACS Nano; 2013 Jun; 7(6):5330-42. PubMed ID: 23651267 [TBL] [Abstract][Full Text] [Related]
30. The optical research progress of nanophosphors composed of transition elements in the fourth period of near-infrared windows I and II for deep-tissue theranostics. Chan MH; Huang WT; Chen KC; Su TY; Chan YC; Hsiao M; Liu RS Nanoscale; 2022 May; 14(19):7123-7136. PubMed ID: 35353112 [TBL] [Abstract][Full Text] [Related]
31. Recent Progress in Fluorescence Imaging of the Near-Infrared II Window. Miao Y; Gu C; Zhu Y; Yu B; Shen Y; Cong H Chembiochem; 2018 Dec; 19(24):2522-2541. PubMed ID: 30247795 [TBL] [Abstract][Full Text] [Related]
32. Recent Advances in Near-Infrared-II Fluorescence Imaging for Deep-Tissue Molecular Analysis and Cancer Diagnosis. Meng X; Pang X; Zhang K; Gong C; Yang J; Dong H; Zhang X Small; 2022 Aug; 18(31):e2202035. PubMed ID: 35762403 [TBL] [Abstract][Full Text] [Related]
33. Polymethine-Based Semiconducting Polymer Dots with Narrow-Band Emission and Absorption/Emission Maxima at NIR-II for Bioimaging. Liu MH; Zhang Z; Yang YC; Chan YH Angew Chem Int Ed Engl; 2021 Jan; 60(2):983-989. PubMed ID: 32990356 [TBL] [Abstract][Full Text] [Related]
34. Polymethine Thiopyrylium Fluorophores with Absorption beyond 1000 nm for Biological Imaging in the Second Near-Infrared Subwindow. Ding B; Xiao Y; Zhou H; Zhang X; Qu C; Xu F; Deng Z; Cheng Z; Hong X J Med Chem; 2019 Feb; 62(4):2049-2059. PubMed ID: 30501190 [TBL] [Abstract][Full Text] [Related]
35. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Hong G; Lee JC; Robinson JT; Raaz U; Xie L; Huang NF; Cooke JP; Dai H Nat Med; 2012 Dec; 18(12):1841-6. PubMed ID: 23160236 [TBL] [Abstract][Full Text] [Related]
36. In Vivo Fluorescence Imaging in the Second Near-Infrared Window Using Carbon Nanotubes. Hong G; Dai H Methods Mol Biol; 2016; 1444():167-81. PubMed ID: 27283426 [TBL] [Abstract][Full Text] [Related]
37. Near-Infrared Excitation/Emission and Multiphoton-Induced Fluorescence of Carbon Dots. Li D; Jing P; Sun L; An Y; Shan X; Lu X; Zhou D; Han D; Shen D; Zhai Y; Qu S; Zbořil R; Rogach AL Adv Mater; 2018 Mar; 30(13):e1705913. PubMed ID: 29411443 [TBL] [Abstract][Full Text] [Related]
38. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Welsher K; Sherlock SP; Dai H Proc Natl Acad Sci U S A; 2011 May; 108(22):8943-8. PubMed ID: 21576494 [TBL] [Abstract][Full Text] [Related]
39. Indocyanine green-based fluorescence imaging improved by deep learning. Xiong X; He L; Ma Q; Wang Y; Li K; Wang Z; Chen X; Zhu S; Zhan Y; Cao X J Biophotonics; 2023 Nov; 16(11):e202300066. PubMed ID: 37556710 [TBL] [Abstract][Full Text] [Related]
40. An Extended NIR-II Superior Imaging Window from 1500 to 1900 nm for High-Resolution In Vivo Multiplexed Imaging Based on Lanthanide Nanocrystals. Chen ZH; Wang X; Yang M; Ming J; Yun B; Zhang L; Wang X; Yu P; Xu J; Zhang H; Zhang F Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202311883. PubMed ID: 37860881 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]