These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26556581)

  • 1. Implications of Climate Change on the Heat Budget of Lentic Systems Used for Power Station Cooling: Case Study Clinton Lake, Illinois.
    Quijano JC; Jackson PR; Santacruz S; Morales VM; García MH
    Environ Sci Technol; 2016 Jan; 50(1):478-88. PubMed ID: 26556581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures.
    Talati S; Zhai H; Kyle GP; Morgan MG; Patel P; Liu L
    Environ Sci Technol; 2016 Nov; 50(22):12095-12104. PubMed ID: 27768843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature.
    Mulhollem JJ; Suski CD; Wahl DH
    Fish Physiol Biochem; 2015 Aug; 41(4):833-42. PubMed ID: 25869216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-related mortality under climate change and the impact of adaptation through air conditioning: A case study from Thessaloniki, Greece.
    Kouis P; Psistaki K; Giallouros G; Michanikou A; Kakkoura MG; Stylianou KS; Papatheodorou SI; Paschalidou AΚ
    Environ Res; 2021 Aug; 199():111285. PubMed ID: 34015294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China.
    Wang S; Qian X; Han BP; Luo LC; Hamilton DP
    Water Res; 2012 May; 46(8):2591-604. PubMed ID: 22391017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiating the Effects of Climate Change-Induced Temperature and Streamflow Changes on the Vulnerability of Once-Through Thermoelectric Power Plants.
    Henry CL; Pratson LF
    Environ Sci Technol; 2019 Apr; 53(7):3969-3976. PubMed ID: 30848903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the climate variability on Lake Nasser evaporation based on the Bowen ratio energy budget method.
    Elsawwaf M; Willems P
    J Environ Biol; 2012 Apr; 33(2 Suppl):475-85. PubMed ID: 23424853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of cooling-water discharges from power plants.
    Wu J; Buchak EM; Edinger JE; Kolluru VS
    J Environ Manage; 2001 Jan; 61(1):77-92. PubMed ID: 11381460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.
    Warren DR; Kraft CE; Josephson DC; Driscoll CT
    Glob Chang Biol; 2017 Jun; 23(6):2149-2153. PubMed ID: 27976837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal regimes of Rocky Mountain lakes warm with climate change.
    Roberts JJ; Fausch KD; Schmidt TS; Walters DM
    PLoS One; 2017; 12(7):e0179498. PubMed ID: 28683083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change induced salinisation of artificial lakes in the Netherlands and consequences for drinking water production.
    Bonte M; Zwolsman JJ
    Water Res; 2010 Aug; 44(15):4411-24. PubMed ID: 20580400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy efficiency in waste-to-energy and its relevance with regard to climate control.
    Ragossnig AM; Wartha C; Kirchner A
    Waste Manag Res; 2008 Feb; 26(1):70-7. PubMed ID: 18338703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future projections of water level and thermal regime changes of a multipurpose subtropical reservoir (Sao Paulo, Brazil).
    Barbosa CC; Calijuri MDC; Dos Santos ACA; Ladwig R; de Oliveira LFA; Buarque ACS
    Sci Total Environ; 2021 May; 770():144741. PubMed ID: 33736421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal pollution consequences of the implementation of the president's energy message on increased coal utilization.
    Parker FL
    Environ Health Perspect; 1979 Dec; 33():303-14. PubMed ID: 540623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale modeled contemporary and future water temperature estimates for 10774 Midwestern U.S. Lakes.
    Winslow LA; Hansen GJA; Read JS; Notaro M
    Sci Data; 2017 Apr; 4():170053. PubMed ID: 28440790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermophillic and thermotolerant fungi isolated from the thermal effluent of nuclear power generating reactors: dispersal of human opportunistic and veterinary pathogenic fungi.
    Rippon JW; Gerhold R; Heath M
    Mycopathologia; 1980 Mar; 70(3):169-79. PubMed ID: 7374746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia.
    Yihdego Y; Webb J
    Environ Monit Assess; 2016 May; 188(5):308. PubMed ID: 27108121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.
    Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC
    Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.