These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
693 related articles for article (PubMed ID: 26556857)
1. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells. Wang J; De Veirman K; De Beule N; Maes K; De Bruyne E; Van Valckenborgh E; Vanderkerken K; Menu E Oncotarget; 2015 Dec; 6(41):43992-4004. PubMed ID: 26556857 [TBL] [Abstract][Full Text] [Related]
2. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. Wang J; De Veirman K; Faict S; Frassanito MA; Ribatti D; Vacca A; Menu E J Pathol; 2016 Jun; 239(2):162-73. PubMed ID: 26956697 [TBL] [Abstract][Full Text] [Related]
3. Decitabine shows potent anti-myeloma activity by depleting monocytic myeloid-derived suppressor cells in the myeloma microenvironment. Zhou J; Shen Q; Lin H; Hu L; Li G; Zhang X J Cancer Res Clin Oncol; 2019 Feb; 145(2):329-336. PubMed ID: 30426212 [TBL] [Abstract][Full Text] [Related]
4. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Wang J; Hendrix A; Hernot S; Lemaire M; De Bruyne E; Van Valckenborgh E; Lahoutte T; De Wever O; Vanderkerken K; Menu E Blood; 2014 Jul; 124(4):555-66. PubMed ID: 24928860 [TBL] [Abstract][Full Text] [Related]
5. Runx2 Deficiency in Osteoblasts Promotes Myeloma Progression by Altering the Bone Microenvironment at New Bone Sites. Xu X; Zhang C; Trotter TN; Gowda PS; Lu Y; Ponnazhagan S; Javed A; Li J; Yang Y Cancer Res; 2020 Mar; 80(5):1036-1048. PubMed ID: 31911552 [TBL] [Abstract][Full Text] [Related]
6. Myeloid-derived suppressor cells: The green light for myeloma immune escape. Malek E; de Lima M; Letterio JJ; Kim BG; Finke JH; Driscoll JJ; Giralt SA Blood Rev; 2016 Sep; 30(5):341-8. PubMed ID: 27132116 [TBL] [Abstract][Full Text] [Related]
7. Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Wang J; Faict S; Maes K; De Bruyne E; Van Valckenborgh E; Schots R; Vanderkerken K; Menu E Oncotarget; 2016 Jun; 7(25):38927-38945. PubMed ID: 26950273 [TBL] [Abstract][Full Text] [Related]
8. Bone marrow mesenchymal stem cells suppress ascitogenous hepatoma progression in BALB/c mouse through reducing myeloid-derived suppressor cells. Su X; Zhang L; Ye J; Yang L; Li Y; Wang Y Biomed Mater Eng; 2015; 25(1 Suppl):167-77. PubMed ID: 25538067 [TBL] [Abstract][Full Text] [Related]
9. Alteration of cellular and immune-related properties of bone marrow mesenchymal stem cells and macrophages by K562 chronic myeloid leukemia cell derived exosomes. Jafarzadeh N; Safari Z; Pornour M; Amirizadeh N; Forouzandeh Moghadam M; Sadeghizadeh M J Cell Physiol; 2019 Apr; 234(4):3697-3710. PubMed ID: 30317554 [TBL] [Abstract][Full Text] [Related]
10. Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3. Diao J; Yang X; Song X; Chen S; He Y; Wang Q; Chen G; Luo C; Wu X; Zhang Y Med Oncol; 2015 Feb; 32(2):453. PubMed ID: 25603952 [TBL] [Abstract][Full Text] [Related]
11. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Guo X; Qiu W; Liu Q; Qian M; Wang S; Zhang Z; Gao X; Chen Z; Xue H; Li G Oncogene; 2018 Aug; 37(31):4239-4259. PubMed ID: 29713056 [TBL] [Abstract][Full Text] [Related]
12. Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment. Parker KH; Beury DW; Ostrand-Rosenberg S Adv Cancer Res; 2015; 128():95-139. PubMed ID: 26216631 [TBL] [Abstract][Full Text] [Related]
13. Serum amyloid A3 exacerbates cancer by enhancing the suppressive capacity of myeloid-derived suppressor cells via TLR2-dependent STAT3 activation. Lee JM; Kim EK; Seo H; Jeon I; Chae MJ; Park YJ; Song B; Kim YS; Kim YJ; Ko HJ; Kang CY Eur J Immunol; 2014 Jun; 44(6):1672-84. PubMed ID: 24659444 [TBL] [Abstract][Full Text] [Related]
14. Bone marrow PMN-MDSCs and neutrophils are functionally similar in protection of multiple myeloma from chemotherapy. Ramachandran IR; Condamine T; Lin C; Herlihy SE; Garfall A; Vogl DT; Gabrilovich DI; Nefedova Y Cancer Lett; 2016 Feb; 371(1):117-24. PubMed ID: 26639197 [TBL] [Abstract][Full Text] [Related]
15. Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Binsfeld M; Muller J; Lamour V; De Veirman K; De Raeve H; Bellahcène A; Van Valckenborgh E; Baron F; Beguin Y; Caers J; Heusschen R Oncotarget; 2016 Jun; 7(25):37931-37943. PubMed ID: 27177328 [TBL] [Abstract][Full Text] [Related]
16. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Görgün GT; Whitehill G; Anderson JL; Hideshima T; Maguire C; Laubach J; Raje N; Munshi NC; Richardson PG; Anderson KC Blood; 2013 Apr; 121(15):2975-87. PubMed ID: 23321256 [TBL] [Abstract][Full Text] [Related]
18. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Görgün G; Samur MK; Cowens KB; Paula S; Bianchi G; Anderson JE; White RE; Singh A; Ohguchi H; Suzuki R; Kikuchi S; Harada T; Hideshima T; Tai YT; Laubach JP; Raje N; Magrangeas F; Minvielle S; Avet-Loiseau H; Munshi NC; Dorfman DM; Richardson PG; Anderson KC Clin Cancer Res; 2015 Oct; 21(20):4607-18. PubMed ID: 25979485 [TBL] [Abstract][Full Text] [Related]
19. Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Bianchi G; Borgonovo G; Pistoia V; Raffaghello L Histol Histopathol; 2011 Jul; 26(7):941-51. PubMed ID: 21630223 [TBL] [Abstract][Full Text] [Related]
20. Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. De Veirman K; Van Ginderachter JA; Lub S; De Beule N; Thielemans K; Bautmans I; Oyajobi BO; De Bruyne E; Menu E; Lemaire M; Van Riet I; Vanderkerken K; Van Valckenborgh E Oncotarget; 2015 Apr; 6(12):10532-47. PubMed ID: 25871384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]