These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 2655698)

  • 1. Effects of single-base bulges on intercalator binding to small RNA and DNA hairpins and a ribosomal RNA fragment.
    White SA; Draper DE
    Biochemistry; 1989 Feb; 28(4):1892-7. PubMed ID: 2655698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single base bulges in small RNA hairpins enhance ethidium binding and promote an allosteric transition.
    White SA; Draper DE
    Nucleic Acids Res; 1987 May; 15(10):4049-64. PubMed ID: 2438651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of high-affinity intercalator sites in a ribosomal RNA fragment by the affinity cleavage intercalator methidiumpropyl-EDTA-iron(II).
    Kean JM; White SA; Draper DE
    Biochemistry; 1985 Sep; 24(19):5062-70. PubMed ID: 3935157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational and structural analysis of the RNA binding site for Escherichia coli ribosomal protein S7.
    Dragon F; Payant C; Brakier-Gingras L
    J Mol Biol; 1994 Nov; 244(1):74-85. PubMed ID: 7525976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for bifunctional zinc(II) macrocyclic complex recognition of thymine bulges in DNA.
    del Mundo IM; Siters KE; Fountain MA; Morrow JR
    Inorg Chem; 2012 May; 51(9):5444-57. PubMed ID: 22507054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary structure model for the last two domains of single-stranded RNA phage Q beta.
    Beekwilder MJ; Nieuwenhuizen R; van Duin J
    J Mol Biol; 1995 Apr; 247(5):903-17. PubMed ID: 7723040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational and thermodynamic effects of naturally occurring base methylations in a ribosomal RNA hairpin of Bacillus stearothermophilus.
    Heus HA; Formenoy LJ; Van Knippenberg PH
    Eur J Biochem; 1990 Mar; 188(2):275-81. PubMed ID: 1690648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of circular permutation to assess six bulges and four loops of DNA-packaging pRNA of bacteriophage phi29.
    Zhang C; Tellinghuisen T; Guo P
    RNA; 1997 Mar; 3(3):315-23. PubMed ID: 9056768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T7 RNA polymerase interacts with its promoter from one side of the DNA helix.
    Muller DK; Martin CT; Coleman JE
    Biochemistry; 1989 Apr; 28(8):3306-13. PubMed ID: 2545254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of T7 RNA polymerase with T7 late promoters measured by footprinting with methidiumpropyl-EDTA-iron(II).
    Gunderson SI; Chapman KA; Burgess RR
    Biochemistry; 1987 Mar; 26(6):1539-46. PubMed ID: 3036203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence effects on RNA bulge-induced helix bending and a conserved five-nucleotide bulge from the group I introns.
    Luebke KJ; Tinoco I
    Biochemistry; 1996 Sep; 35(36):11677-84. PubMed ID: 8794748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic parameters for an expanded nearest-neighbor model for the formation of RNA duplexes with single nucleotide bulges.
    Znosko BM; Silvestri SB; Volkman H; Boswell B; Serra MJ
    Biochemistry; 2002 Aug; 41(33):10406-17. PubMed ID: 12173927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition.
    Glucksmann-Kuis MA; Dai X; Markiewicz P; Rothman-Denes LB
    Cell; 1996 Jan; 84(1):147-54. PubMed ID: 8548819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of T7 RNA polymerase initiation by triple-helical DNA complexes: a model for artificial gene repression.
    Maher LJ
    Biochemistry; 1992 Aug; 31(33):7587-94. PubMed ID: 1510945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of mRNA hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction with special elongation factor SELB.
    Hüttenhofer A; Westhof E; Böck A
    RNA; 1996 Apr; 2(4):354-66. PubMed ID: 8634916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequence of the rrnG ribosomal RNA promoter region of Escherichia coli.
    Shen WF; Squires C; Squires CL
    Nucleic Acids Res; 1982 May; 10(10):3303-13. PubMed ID: 6285294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural motifs in ribosomal RNAs: implications for RNA design and genomics.
    Zorn J; Gan HH; Shiffeldrim N; Schlick T
    Biopolymers; 2004 Feb; 73(3):340-7. PubMed ID: 14755570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of base sequence on the stability of RNA and DNA single base bulges.
    Zhu J; Wartell RM
    Biochemistry; 1999 Nov; 38(48):15986-93. PubMed ID: 10625466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of a trinucleotide A-T-A bulge loop within a DNA duplex.
    Rosen MA; Shapiro L; Patel DJ
    Biochemistry; 1992 Apr; 31(16):4015-26. PubMed ID: 1314655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective strand scission by intercalating drugs at DNA bulges.
    Williams LD; Goldberg IH
    Biochemistry; 1988 Apr; 27(8):3004-11. PubMed ID: 2456781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.