These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2655703)
1. Staphylococcal nuclease active-site amino acids: pH dependence of tyrosines and arginines by 13C NMR and correlation with kinetic studies. Grissom CB; Markley JL Biochemistry; 1989 Mar; 28(5):2116-24. PubMed ID: 2655703 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and magnetic resonance studies of active-site mutants of staphylococcal nuclease: factors contributing to catalysis. Serpersu EH; Shortle D; Mildvan AS Biochemistry; 1987 Mar; 26(5):1289-300. PubMed ID: 3567171 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of the reaction catalyzed by staphylococcal nuclease: identification of the rate-determining step. Hale SP; Poole LB; Gerlt JA Biochemistry; 1993 Jul; 32(29):7479-87. PubMed ID: 8338846 [TBL] [Abstract][Full Text] [Related]
4. Kinetic and magnetic resonance studies of the glutamate-43 to serine mutant of staphylococcal nuclease. Serpersu EH; Hibler DW; Gerlt JA; Mildvan AS Biochemistry; 1989 Feb; 28(4):1539-48. PubMed ID: 2566322 [TBL] [Abstract][Full Text] [Related]
5. The tyrosine-225 to phenylalanine mutation of Escherichia coli aspartate aminotransferase results in an alkaline transition in the spectrophotometric and kinetic pKa values and reduced values of both kcat and Km. Goldberg JM; Swanson RV; Goodman HS; Kirsch JF Biochemistry; 1991 Jan; 30(1):305-12. PubMed ID: 1988027 [TBL] [Abstract][Full Text] [Related]
6. Two-dimensional NMR studies of staphylococcal nuclease: evidence for conformational heterogeneity from hydrogen-1, carbon-13, and nitrogen-15 spin system assignments of the aromatic amino acids in the nuclease H124L-thymidine 3',5'-bisphosphate-Ca2+ ternary complex. Wang JF; Hinck AP; Loh SN; Markley JL Biochemistry; 1990 May; 29(17):4242-53. PubMed ID: 2361141 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and conformational effects of lysine substitutions for arginines 35 and 87 in the active site of staphylococcal nuclease. Pourmotabbed T; Dell'Acqua M; Gerlt JA; Stanczyk SM; Bolton PH Biochemistry; 1990 Apr; 29(15):3677-83. PubMed ID: 2111164 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen-1 nuclear magnetic resonance studies of staphylococcal nuclease variant H124L: pH dependence of histidines and tyrosines. Chinami M; Shingu M Arch Biochem Biophys; 1989 Apr; 270(1):126-36. PubMed ID: 2930185 [TBL] [Abstract][Full Text] [Related]
9. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues. Stivers JT; Abeygunawardana C; Mildvan AS; Hajipour G; Whitman CP Biochemistry; 1996 Jan; 35(3):814-23. PubMed ID: 8547261 [TBL] [Abstract][Full Text] [Related]
10. Application of nuclear magnetic resonance spectroscopy to proteins. Griffin JH; Furie B; Schechter AN Biochimie; 1975; 57(4):453-60. PubMed ID: 1148335 [TBL] [Abstract][Full Text] [Related]
11. NMR assignments of the four histidines of staphylococcal nuclease in native and denatured states. Alexandrescu AT; Mills DA; Ulrich EL; Chinami M; Markley JL Biochemistry; 1988 Mar; 27(6):2158-65. PubMed ID: 3288282 [TBL] [Abstract][Full Text] [Related]
12. Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease. Truckses DM; Somoza JR; Prehoda KE; Miller SC; Markley JL Protein Sci; 1996 Sep; 5(9):1907-16. PubMed ID: 8880915 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance studies of the binding of oligonucleotide substrates to mutants of staphylococcal nuclease. Chuang WJ; Gittis AG; Mildvan AS Proteins; 1994 Jan; 18(1):68-80. PubMed ID: 8146123 [TBL] [Abstract][Full Text] [Related]
14. Dependence of the phosphorylation of alkaline phosphatase by phosphate monoesters on the pKa of the leaving group. Han R; Coleman JE Biochemistry; 1995 Apr; 34(13):4238-45. PubMed ID: 7703237 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis. Kuo LC; Miller AW; Lee S; Kozuma C Biochemistry; 1988 Nov; 27(24):8823-32. PubMed ID: 3072022 [TBL] [Abstract][Full Text] [Related]
16. Use of site-directed mutagenesis and alternative substrates to assign the prototropic groups important to catalysis by Escherichia coli aspartate aminotransferase. Gloss LM; Kirsch JF Biochemistry; 1995 Mar; 34(12):3999-4007. PubMed ID: 7696265 [TBL] [Abstract][Full Text] [Related]
17. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme. Legler PM; Massiah MA; Mildvan AS Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023 [TBL] [Abstract][Full Text] [Related]
18. Site-directed mutagenesis of His343-->Ala in Citrobacter freundii tyrosine phenol-lyase. Effects on the kinetic mechanism and rate-determining step. Chen H; Gollnick P; Phillips RS Eur J Biochem; 1995 Apr; 229(2):540-9. PubMed ID: 7744078 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of tyrosine-71 to phenylalanine in Citrobacter freundii tyrosine phenol-lyase: evidence for dual roles of tyrosine-71 as a general acid catalyst in the reaction mechanism and in cofactor binding. Chen HY; Demidkina TV; Phillips RS Biochemistry; 1995 Sep; 34(38):12276-83. PubMed ID: 7547970 [TBL] [Abstract][Full Text] [Related]
20. Noncoded amino acid replacement probes of the aspartate aminotransferase mechanism. Park Y; Luo J; Schultz PG; Kirsch JF Biochemistry; 1997 Aug; 36(34):10517-25. PubMed ID: 9265632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]