These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 265575)
1. Mechanism of tertiary structural change in hemoglobin. Gelin BR; Karplus M Proc Natl Acad Sci U S A; 1977 Mar; 74(3):801-5. PubMed ID: 265575 [TBL] [Abstract][Full Text] [Related]
2. Hemoglobin tertiary structural change on ligand binding. Its role in the co-operative mechanism. Gelin BR; Lee AW; Karplus M J Mol Biol; 1983 Dec; 171(4):489-559. PubMed ID: 6663623 [TBL] [Abstract][Full Text] [Related]
3. The 1.9 A structure of deoxy beta 4 hemoglobin. Analysis of the partitioning of quaternary-associated and ligand-induced changes in tertiary structure. Borgstahl GE; Rogers PH; Arnone A J Mol Biol; 1994 Feb; 236(3):831-43. PubMed ID: 8114097 [TBL] [Abstract][Full Text] [Related]
4. A novel low oxygen affinity recombinant hemoglobin (alpha96val--> Trp): switching quaternary structure without changing the ligation state. Kim HW; Shen TJ; Sun DP; Ho NT; Madrid M; Ho C J Mol Biol; 1995 May; 248(4):867-82. PubMed ID: 7752247 [TBL] [Abstract][Full Text] [Related]
5. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Perutz MF Annu Rev Biochem; 1979; 48():327-86. PubMed ID: 382987 [No Abstract] [Full Text] [Related]
6. Absence of cooperative energy at the heme in liganded hemoglobins. Rousseau DL; Tan SL; Ondrias MR; Ogawa S; Noble RW Biochemistry; 1984 Jun; 23(13):2857-65. PubMed ID: 6466621 [TBL] [Abstract][Full Text] [Related]
7. Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding. Liddington R; Derewenda Z; Dodson G; Harris D Nature; 1988 Feb; 331(6158):725-8. PubMed ID: 3344047 [TBL] [Abstract][Full Text] [Related]
8. Structural transitions upon ligand binding in a cooperative dimeric hemoglobin. Royer WE; Hendrickson WA; Chiancone E Science; 1990 Aug; 249(4968):518-21. PubMed ID: 2382132 [TBL] [Abstract][Full Text] [Related]
9. New insights into the allosteric mechanism of human hemoglobin from molecular dynamics simulations. Mouawad L; Perahia D; Robert CH; Guilbert C Biophys J; 2002 Jun; 82(6):3224-45. PubMed ID: 12023247 [TBL] [Abstract][Full Text] [Related]
10. High-resolution crystallographic analysis of a co-operative dimeric hemoglobin. Royer WE J Mol Biol; 1994 Jan; 235(2):657-81. PubMed ID: 8289287 [TBL] [Abstract][Full Text] [Related]
11. Energy-structure correlation in metalloporphyrins and the control of oxygen binding by hemoglobin. Warshel A Proc Natl Acad Sci U S A; 1977 May; 74(5):1789-93. PubMed ID: 266703 [TBL] [Abstract][Full Text] [Related]
12. A structural model for the kinetic behavior of hemoglobin. Moffat K; Deatherage JF; Seybert DW Science; 1979 Nov; 206(4422):1035-42. PubMed ID: 493990 [TBL] [Abstract][Full Text] [Related]
13. Effects of heme-globin and chain-chain interactions on the conformation of human hemoglobin. A kinetic study. Geraci G; Parkhurst LJ Biochemistry; 1973 Aug; 12(18):3414-8. PubMed ID: 4731185 [No Abstract] [Full Text] [Related]
14. Energetics of subunit assembly and ligand binding in human hemoglobin. Ackers GK Biophys J; 1980 Oct; 32(1):331-46. PubMed ID: 7248452 [TBL] [Abstract][Full Text] [Related]
15. High-resolution crystal structure of magnesium (MgII)-iron (FeII) hybrid hemoglobin with liganded beta subunits. Park SY; Nakagawa A; Morimoto H J Mol Biol; 1996 Feb; 255(5):726-34. PubMed ID: 8636974 [TBL] [Abstract][Full Text] [Related]
16. The apolar distal histidine mutant (His69-->Val) of the homodimeric Scapharca hemoglobin is in an R-like conformation. Guarrera L; Colotti G; Boffi A; Chiancone E; Das TK; Rousseau DL; Gibson QH Biochemistry; 1998 Apr; 37(16):5608-15. PubMed ID: 9548946 [TBL] [Abstract][Full Text] [Related]
17. A comparison of functional and structural consequences of the tyrosine B10 and glutamine E7 motifs in two invertebrate hemoglobins (Ascaris suum and Lucina pectinata). Peterson ES; Huang S; Wang J; Miller LM; Vidugiris G; Kloek AP; Goldberg DE; Chance MR; Wittenberg JB; Friedman JM Biochemistry; 1997 Oct; 36(42):13110-21. PubMed ID: 9335574 [TBL] [Abstract][Full Text] [Related]
18. Structure, dynamics, and reactivity in hemoglobin. Friedman JM Science; 1985 Jun; 228(4705):1273-80. PubMed ID: 4001941 [TBL] [Abstract][Full Text] [Related]
19. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process. Tsai CH; Shen TJ; Ho NT; Ho C Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550 [TBL] [Abstract][Full Text] [Related]
20. The 1.8 A structure of carbonmonoxy-beta 4 hemoglobin. Analysis of a homotetramer with the R quaternary structure of liganded alpha 2 beta 2 hemoglobin. Borgstahl GE; Rogers PH; Arnone A J Mol Biol; 1994 Feb; 236(3):817-30. PubMed ID: 8114096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]