BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 26557657)

  • 21. [Recent progress in iron metabolism and iron-related anemia].
    Harigae H
    Rinsho Byori; 2010 Dec; 58(12):1211-8. PubMed ID: 21348241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic screens reveal CCDC115 as a modulator of erythroid iron and heme trafficking.
    Sobh A; Loguinov A; Zhou J; Jenkitkasemwong S; Zeidan R; El Ahmadie N; Tagmount A; Knutson M; Fraenkel PG; Vulpe CD
    Am J Hematol; 2020 Sep; 95(9):1085-1098. PubMed ID: 32510613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis.
    Ryu MS; Zhang D; Protchenko O; Shakoury-Elizeh M; Philpott CC
    J Clin Invest; 2017 May; 127(5):1786-1797. PubMed ID: 28375153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TMEM14C is required for erythroid mitochondrial heme metabolism.
    Yien YY; Robledo RF; Schultz IJ; Takahashi-Makise N; Gwynn B; Bauer DE; Dass A; Yi G; Li L; Hildick-Smith GJ; Cooney JD; Pierce EL; Mohler K; Dailey TA; Miyata N; Kingsley PD; Garone C; Hattangadi SM; Huang H; Chen W; Keenan EM; Shah DI; Schlaeger TM; DiMauro S; Orkin SH; Cantor AB; Palis J; Koehler CM; Lodish HF; Kaplan J; Ward DM; Dailey HA; Phillips JD; Peters LL; Paw BH
    J Clin Invest; 2014 Oct; 124(10):4294-304. PubMed ID: 25157825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heme oxygenase 1 is expressed in murine erythroid cells where it controls the level of regulatory heme.
    Garcia-Santos D; Schranzhofer M; Horvathova M; Jaberi MM; Bogo Chies JA; Sheftel AD; Ponka P
    Blood; 2014 Apr; 123(14):2269-77. PubMed ID: 24511086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heme-dependent up-regulation of the alpha-globin gene expression by transcriptional repressor Bach1 in erythroid cells.
    Tahara T; Sun J; Igarashi K; Taketani S
    Biochem Biophys Res Commun; 2004 Nov; 324(1):77-85. PubMed ID: 15464985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron Metabolism in the Disorders of Heme Biosynthesis.
    Ricci A; Di Betto G; Bergamini E; Buzzetti E; Corradini E; Ventura P
    Metabolites; 2022 Aug; 12(9):. PubMed ID: 36144223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular glycine is necessary for optimal hemoglobinization of erythroid cells.
    Garcia-Santos D; Schranzhofer M; Bergeron R; Sheftel AD; Ponka P
    Haematologica; 2017 Aug; 102(8):1314-1323. PubMed ID: 28495915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A protective role of heme-regulated eIF2α kinase in cadmium-induced toxicity in erythroid cells.
    Wang L; Wang X; Zhang S; Qu G; Liu S
    Food Chem Toxicol; 2013 Dec; 62():880-91. PubMed ID: 24161693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis.
    Chen W; Dailey HA; Paw BH
    Blood; 2010 Jul; 116(4):628-30. PubMed ID: 20427704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A critical role for the co-repressor N-CoR in erythroid differentiation and heme synthesis.
    Zhang D; Cho E; Wong J
    Cell Res; 2007 Sep; 17(9):804-14. PubMed ID: 17768398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins.
    Taketani S; Ishigaki M; Mizutani A; Uebayashi M; Numata M; Ohgari Y; Kitajima S
    Biochemistry; 2007 Dec; 46(51):15054-61. PubMed ID: 18044970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordinate expression of heme and globin is essential for effective erythropoiesis.
    Doty RT; Phelps SR; Shadle C; Sanchez-Bonilla M; Keel SB; Abkowitz JL
    J Clin Invest; 2015 Dec; 125(12):4681-91. PubMed ID: 26551679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of heme synthesis during Friend cell differentiation: role of iron and transferrin.
    Laskey JD; Ponka P; Schulman HM
    J Cell Physiol; 1986 Nov; 129(2):185-92. PubMed ID: 3464611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial iron metabolism and sideroblastic anemia.
    Sheftel AD; Richardson DR; Prchal J; Ponka P
    Acta Haematol; 2009; 122(2-3):120-33. PubMed ID: 19907149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different effects of an N-phenylimide herbicide on heme biosynthesis between human and rat erythroid cells.
    Kawamura S; Otani M; Miyamoto T; Abe J; Ihara R; Inawaka K; Fantel AG
    Reprod Toxicol; 2021 Jan; 99():27-38. PubMed ID: 33249232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Congenital erythropoietic porphyria: prolonged high-level expression and correction of the heme biosynthetic defect by retroviral-mediated gene transfer into porphyric and erythroid cells.
    Kauppinen R; Glass IA; Aizencang G; Astrin KH; Atweh GF; Desnick RJ
    Mol Genet Metab; 1998 Sep; 65(1):10-7. PubMed ID: 9787090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathophysiology and genetic mutations in congenital sideroblastic anemia.
    Fujiwara T; Harigae H
    Pediatr Int; 2013 Dec; 55(6):675-9. PubMed ID: 24003969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Animal models for X-linked sideroblastic anemia.
    Yamamoto M; Nakajima O
    Int J Hematol; 2000 Aug; 72(2):157-64. PubMed ID: 11039663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multifunctional 5-aminolevulinic acid derivative induces erythroid differentiation of K562 human erythroleukemic cells.
    Berkovitch-Luria G; Yakobovitch S; Weitman M; Nudelman A; Rozic G; Rephaeli A; Malik Z
    Eur J Pharm Sci; 2012 Aug; 47(1):206-14. PubMed ID: 22705251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.