These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26557710)

  • 1. A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation.
    Poznyakovskiy AA; Mainka A; Platzek I; Mürbe D
    Biomed Res Int; 2015; 2015():906356. PubMed ID: 26557710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.
    Mainka A; Poznyakovskiy A; Platzek I; Fleischer M; Sundberg J; Mürbe D
    PLoS One; 2015; 10(7):e0132241. PubMed ID: 26186691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vocal Tract Morphology in Inhaling Singing: An MRI-Based Study.
    Moerman M; Vanhecke F; Van Assche L; Vercruysse J; Daemers K; Leman M
    J Voice; 2016 Jul; 30(4):466-71. PubMed ID: 26122925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human vocal tract analysis by in vivo 3D MRI during phonation: a complete system for imaging, quantitative modeling, and speech synthesis.
    Wismueller A; Behrends J; Hoole P; Leinsinger GL; Reiser MF; Westesson PL
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):306-12. PubMed ID: 18982619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weight-bearing MR imaging as an option in the study of gravitational effects on the vocal tract of untrained subjects in singing phonation.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    PLoS One; 2014; 9(11):e112405. PubMed ID: 25379885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vocal tract shapes in different singing functions used in musical theater singing-a pilot study.
    Echternach M; Popeil L; Traser L; Wienhausen S; Richter B
    J Voice; 2014 Sep; 28(5):653.e1-653.e7. PubMed ID: 24810998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical reconstruction of high-speed surface dynamics in an uncontrollable environment.
    Luegmair G; Kniesburges S; Zimmermann M; Sutor A; Eysholdt U; Döllinger M
    IEEE Trans Med Imaging; 2010 Dec; 29(12):1979-91. PubMed ID: 21118756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vocal tract configurations in tenors' passaggio in different vowel conditions-a real-time magnetic resonance imaging study.
    Echternach M; Traser L; Richter B
    J Voice; 2014 Mar; 28(2):262.e1-262.e8. PubMed ID: 24412038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphical evaluation of vocal fold vibratory patterns by high-speed videolaryngoscopy.
    Pinheiro AP; Dajer ME; Hachiya A; Montagnoli AN; Tsuji D
    J Voice; 2014 Jan; 28(1):106-11. PubMed ID: 24275457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of supine and upright position on vocal tract configurations during singing--a comparative study in professional tenors.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    J Voice; 2013 Mar; 27(2):141-8. PubMed ID: 23380394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Region segmentation in the frequency domain applied to upper airway real-time magnetic resonance images.
    Bresch E; Narayanan S
    IEEE Trans Med Imaging; 2009 Mar; 28(3):323-38. PubMed ID: 19244005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images.
    Vasconcelos MJ; Rua Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1153-63. PubMed ID: 21138233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-second MRI of a three-dimensional vocal tract to measure dynamic articulator modifications.
    Burdumy M; Traser L; Burk F; Richter B; Echternach M; Korvink JG; Hennig J; Zaitsev M
    J Magn Reson Imaging; 2017 Jul; 46(1):94-101. PubMed ID: 27943448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling.
    Vampola T; Laukkanen AM; Horácek J; Svec JG
    J Acoust Soc Am; 2011 Jan; 129(1):310-5. PubMed ID: 21303012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation of vocal tract articulators in real-time magnetic resonance imaging.
    Ribeiro V; Isaieva K; Leclere J; Felblinger J; Vuissoz PA; Laprie Y
    Comput Methods Programs Biomed; 2024 Jan; 243():107907. PubMed ID: 37976615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time magnetic resonance imaging investigation of resonance tuning in soprano singing.
    Bresch E; Narayanan S
    J Acoust Soc Am; 2010 Nov; 128(5):EL335-41. PubMed ID: 21110548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of male singers laryngeal vertical displacement during the first passaggio and its implications on the vocal folds vibratory pattern.
    Andrade PA
    J Voice; 2012 Sep; 26(5):665.e19-24. PubMed ID: 22578439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of vocal tract formants in singing and nonperiodic phonation.
    Miller DG; Sulter AM; Schutte HK; Wolf RF
    J Voice; 1997 Mar; 11(1):1-11. PubMed ID: 9075171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.