These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2655832)

  • 1. Cutaneous 10 MHz ultrasound B scan allows the quantitative assessment of burn depth.
    Bauer JA; Sauer T
    Burns Incl Therm Inj; 1989 Feb; 15(1):49-51. PubMed ID: 2655832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative assessment of burn injury in porcine skin with high-frequency ultrasonic imaging.
    Brink JA; Sheets PW; Dines KA; Etchison MR; Hanke CW; Sadove AM
    Invest Radiol; 1986 Aug; 21(8):645-51. PubMed ID: 3528037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The progression of burn depth in experimental burns: a histological and methodological study.
    Papp A; Kiraly K; Härmä M; Lahtinen T; Uusaro A; Alhava E
    Burns; 2004 Nov; 30(7):684-90. PubMed ID: 15475143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of high-frequency ultrasound in dermabrasion of patients with deep partial-thickness burns].
    Zang CY; Cao YQ; Xue WJ; Zhao R; Zhang M; Zhang YH; Feng Z; Wang YB
    Zhonghua Shao Shang Za Zhi; 2017 Feb; 33(2):97-102. PubMed ID: 28219142
    [No Abstract]   [Full Text] [Related]  

  • 5. [Use of 10 MHz ultrasonography in the determination of depth of burn injuries].
    Bauer J; Scheuber PH; Schiller K
    Unfallchirurg; 1986 Jul; 89(7):300-3. PubMed ID: 3529402
    [No Abstract]   [Full Text] [Related]  

  • 6. Differentiation of inflicted dermal burns by high-frequency ultrasound scanning: An animal experiment.
    Stender IM; Nakagawa H; Shimozuma M; Søndergard J
    Skin Res Technol; 1996 Feb; 2(1):27-31. PubMed ID: 27327055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. B-mode ultrasonic echo determination of depth of thermal injury.
    Wachtel TL; Leopold GR; Frank HA; Frank DH
    Burns Incl Therm Inj; 1986 Aug; 12(6):432-7. PubMed ID: 3533225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct.
    Nam SY; Chung E; Suggs LJ; Emelianov SY
    Tissue Eng Part C Methods; 2015 Jun; 21(6):557-66. PubMed ID: 25384558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of burn depth with noncontact ultrasonography.
    Iraniha S; Cinat ME; VanderKam VM; Boyko A; Lee D; Jones J; Achauer BM
    J Burn Care Rehabil; 2000; 21(4):333-8. PubMed ID: 10935815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A standardized model of partial thickness scald burns in mice.
    Cribbs RK; Luquette MH; Besner GE
    J Surg Res; 1998 Nov; 80(1):69-74. PubMed ID: 9790817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessments of burn degree by high-frequency ultrasonic backscattering and statistical model.
    Lin YH; Huang CC; Wang SH
    Phys Med Biol; 2011 Feb; 56(3):757-73. PubMed ID: 21239847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of the depth of retained denatured dermis on the survival rate of grafted skin in burn swine with deep partial-thickness burn].
    Zhao YH; Yang HG; Deng HT; Yuan DL; Xu LH; Huang WQ; Shen YM
    Zhonghua Shao Shang Za Zhi; 2013 Aug; 29(4):365-70. PubMed ID: 24351536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence-based injury prediction data for the water temperature and duration of exposure for clinically relevant deep dermal scald injuries.
    Andrews CJ; Kimble RM; Kempf M; Cuttle L
    Wound Repair Regen; 2017 Sep; 25(5):792-804. PubMed ID: 28857337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reproduction of a mouse model of deep partial-thickness scald and determination of hypoxia in the wound].
    Zhang Y; Bai XZ; Lu S; Li N; Wang YC; Li XQ; Hu XL; Hu DH
    Zhonghua Shao Shang Za Zhi; 2013 Jun; 29(3):277-80. PubMed ID: 24059954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of seawater immersion on the inflammatory response and oxygen free radical injury of rats with superficial partial-thickness scald at early stage].
    Yang YX; Wang JH; Liu L; Zou Q; Zhang Y; Bai Z
    Zhonghua Shao Shang Za Zhi; 2017 Jun; 33(6):361-367. PubMed ID: 28648040
    [No Abstract]   [Full Text] [Related]  

  • 16. Psoriasis vulgaris in 50 MHz B-scan ultrasound--characteristic features of stratum corneum, epidermis and dermis.
    el Gammal S; Auer T; Popp C; Hoffmann K; Altmeyer P; Passmann C; Ermert H
    Acta Derm Venereol Suppl (Stockh); 1994; 186():173-6. PubMed ID: 8073827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the time and temperature relationship for causation of deep-partial thickness skin burns.
    Abraham JP; Plourde B; Vallez L; Stark J; Diller KR
    Burns; 2015 Dec; 41(8):1741-1747. PubMed ID: 26188899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progression of thermal injury: a morphologic study.
    deCamara DL; Raine TJ; London MD; Robson MC; Heggers JP
    Plast Reconstr Surg; 1982 Mar; 69(3):491-9. PubMed ID: 7063572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of contrast-enhanced ultrasound in the diagnosis of burn depth.
    Jiang X; Li F; Chi Y; Chen X; Luo Y; Ye Q; Song W; Li G
    Ann Transl Med; 2021 Aug; 9(16):1315. PubMed ID: 34532452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of cultured human epidermal allografts for the treatment of extensive partial thickness scald burn in children.
    Soeda J; Inokuchi S; Ueno S; Yokoyama S; Kidokoro M; Nakamura Y; Katoh S; Sawada Y; Osada M; Mitomi T
    Tokai J Exp Clin Med; 1993 Jun; 18(1-2):65-70. PubMed ID: 7940610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.