These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26558350)

  • 1. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction.
    Sun Y; Sridhar S; Liu L; Wang X; Zhang Z
    Sci Rep; 2015 Nov; 5():16591. PubMed ID: 26558350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage high temperature sludge gasification using the waste heat from hot blast furnace slags.
    Sun Y; Zhang Z; Liu L; Wang X
    Bioresour Technol; 2015 Dec; 198():364-71. PubMed ID: 26409106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.
    Sun Y; Zhang Z; Liu L; Wang X
    Bioresour Technol; 2015 Apr; 181():174-82. PubMed ID: 25647028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production.
    Sun Y; Nakano J; Liu L; Wang X; Zhang Z
    Sci Rep; 2015 Jun; 5():11436. PubMed ID: 26074060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of steel slags on biomass/carbon dioxide gasification integrated with recovery of high temperature heat.
    Sun Y; Liu Q; Wang H; Zhang Z; Wang X
    Bioresour Technol; 2017 Jan; 223():1-9. PubMed ID: 27771525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of iron and steel slags in mitigating greenhouse gas emissions: A review.
    Chen J; Xing Y; Wang Y; Zhang W; Guo Z; Su W
    Sci Total Environ; 2022 Oct; 844():157041. PubMed ID: 35803422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization.
    Sun Y; Sridhar S; Seetharaman S; Wang H; Liu L; Wang X; Zhang Z
    Sci Rep; 2016 Feb; 6():22323. PubMed ID: 26923104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Products of steel slags an opportunity to save natural resources.
    Motz H; Geiseler J
    Waste Manag; 2001; 21(3):285-93. PubMed ID: 11280521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voluntary GHG reduction of industrial sectors in Taiwan.
    Chen LT; Hu AH
    Chemosphere; 2012 Aug; 88(9):1074-82. PubMed ID: 22627150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect, kinetic and thermodynamics parameters analyses of co-gasification of municipal solid waste and bituminous coal with CO
    Ding G; He B; Yao H; Kuang Y; Song J; Su L
    Waste Manag; 2021 Jan; 119():342-355. PubMed ID: 33181450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.
    Tian S; Jiang J; Chen X; Yan F; Li K
    ChemSusChem; 2013 Dec; 6(12):2348-55. PubMed ID: 23913597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe.
    Barca C; Gérente C; Meyer D; Chazarenc F; Andrès Y
    Water Res; 2012 May; 46(7):2376-84. PubMed ID: 22374297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel process to recycle coal gasification fine slag by preparing Si-Fe-Al-Ca alloy.
    Wang Y; Zhang Z; Li L; Guo X; Wei D; Kong J; Du H; Wang H; Zhuang Y; Xing P
    J Environ Manage; 2023 Jul; 337():117681. PubMed ID: 36931070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.
    Kehagia F
    Waste Manag Res; 2009 May; 27(3):288-94. PubMed ID: 19423603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of steel slag under different cooling conditions.
    Tossavainen M; Engstrom F; Yang Q; Menad N; Lidstrom Larsson M; Bjorkman B
    Waste Manag; 2007; 27(10):1335-44. PubMed ID: 17005388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of magnetic separation to steelmaking slags for reclamation.
    Alanyali H; Cöl M; Yilmaz M; Karagöz S
    Waste Manag; 2006; 26(10):1133-9. PubMed ID: 16545952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multitudinous components recovery, heavy metals evolution and environmental impact of coal gasification slag: A review.
    Guo F; Guo Y; Chen L; Jia W; Zhu Y; Li Y; Wang H; Yao X; Zhang Y; Wu J
    Chemosphere; 2023 Oct; 338():139473. PubMed ID: 37451637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HCN and NH3 formation during coal/char gasification in the presence of NO.
    Lin JY; Zhang S; Zhang L; Min Z; Tay H; Li CZ
    Environ Sci Technol; 2010 May; 44(10):3719-23. PubMed ID: 20415414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.