These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26558436)

  • 1. Global biomass production potentials exceed expected future demand without the need for cropland expansion.
    Mauser W; Klepper G; Zabel F; Delzeit R; Hank T; Putzenlechner B; Calzadilla A
    Nat Commun; 2015 Nov; 6():8946. PubMed ID: 26558436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projected water consumption in future global agriculture: scenarios and related impacts.
    Pfister S; Bayer P; Koehler A; Hellweg S
    Sci Total Environ; 2011 Sep; 409(20):4206-16. PubMed ID: 21840571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Food supply and bioenergy production within the global cropland planetary boundary.
    Henry RC; Engström K; Olin S; Alexander P; Arneth A; Rounsevell MDA
    PLoS One; 2018; 13(3):e0194695. PubMed ID: 29566091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets.
    Schneider JM; Zabel F; Schünemann F; Delzeit R; Mauser W
    PLoS One; 2022; 17(2):e0263063. PubMed ID: 35192630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage.
    Molotoks A; Stehfest E; Doelman J; Albanito F; Fitton N; Dawson TP; Smith P
    Glob Chang Biol; 2018 Dec; 24(12):5895-5908. PubMed ID: 30267559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future urban land expansion and implications for global croplands.
    Bren d'Amour C; Reitsma F; Baiocchi G; Barthel S; Güneralp B; Erb KH; Haberl H; Creutzig F; Seto KC
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):8939-8944. PubMed ID: 28028219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity.
    Zabel F; Delzeit R; Schneider JM; Seppelt R; Mauser W; Václavík T
    Nat Commun; 2019 Jun; 10(1):2844. PubMed ID: 31253787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Historical U.S. cropland areas and the potential for bioenergy production on abandoned croplands.
    Zumkehr A; Campbell JE
    Environ Sci Technol; 2013 Apr; 47(8):3840-7. PubMed ID: 23506118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling Undercover Cropland Inside Forests Using Landscape Variables: A Supplement to Remote Sensing Image Classification.
    Ayanu Y; Conrad C; Jentsch A; Koellner T
    PLoS One; 2015; 10(6):e0130079. PubMed ID: 26098107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global agriculture and carbon trade-offs.
    Johnson JA; Runge CF; Senauer B; Foley J; Polasky S
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12342-7. PubMed ID: 25114254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phosphorus cost of agricultural intensification in the tropics.
    Roy ED; Richards PD; Martinelli LA; Coletta LD; Lins SR; Vazquez FF; Willig E; Spera SA; VanWey LK; Porder S
    Nat Plants; 2016 Apr; 2(5):16043. PubMed ID: 27243646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The costs of saving nature: Does it make "cents"?
    Tanentzap AJ
    PLoS Biol; 2017 Jul; 15(7):e2003292. PubMed ID: 28759563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential.
    Krupnik TJ; Schulthess U; Ahmed ZU; McDonald AJ
    Land use policy; 2017 Jan; 60():206-222. PubMed ID: 28050058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the boom in staple crop production attributed to expanded cropland or improved yield? A comparative analysis between China and India.
    Zhai J; Pu L; Lu Y; Huang S
    Sci Total Environ; 2024 Jul; 933():173151. PubMed ID: 38735335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed.
    Duku C; Zwart SJ; Hein L
    PLoS One; 2018; 13(3):e0192642. PubMed ID: 29513753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Land Use, Yield and Quality Changes of Minor Field Crops: Is There Superseded Potential to Be Reinvented in Northern Europe?
    Peltonen-Sainio P; Jauhiainen L; Lehtonen H
    PLoS One; 2016; 11(11):e0166403. PubMed ID: 27870865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive assessment of agricultural intensification scenarios for the Dongting Lake basin in south-central China in 2030.
    Yin G; Liu L; Chang X; Sun J
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14018-33. PubMed ID: 27040549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agricultural expansion and its impacts on tropical nature.
    Laurance WF; Sayer J; Cassman KG
    Trends Ecol Evol; 2014 Feb; 29(2):107-16. PubMed ID: 24388286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agricultural intensification and ecosystem properties.
    Matson PA; Parton WJ; Power AG; Swift MJ
    Science; 1997 Jul; 277(5325):504-9. PubMed ID: 20662149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximization of fertility transfers from rangeland to cropland: The contribution of control theory.
    Bisson A; Casenave C; Boudsocq S; Daufresne T
    J Theor Biol; 2019 May; 469():187-200. PubMed ID: 30776388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.