These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26558568)

  • 21. Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity.
    Balke N; Maksymovych P; Jesse S; Kravchenko II; Li Q; Kalinin SV
    ACS Nano; 2014 Oct; 8(10):10229-36. PubMed ID: 25257028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of tip mass on frequency response and sensitivity of AFM cantilever in liquid.
    Farokh Payam A; Fathipour M
    Micron; 2015 Mar; 70():50-4. PubMed ID: 25562584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution angle-resolved lateral piezoresponse force microscopy: Visualization of in-plane piezoresponse vectors.
    Chu K; Yang CH
    Rev Sci Instrum; 2018 Dec; 89(12):123704. PubMed ID: 30599567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstructing the distributed force on an atomic force microscope cantilever.
    Wagner R; Killgore J
    Nanotechnology; 2017 Mar; 28(10):104002. PubMed ID: 28085006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oscillation-induced static deflection in scanning force microscopy.
    Heim LO; Johannsmann D
    Rev Sci Instrum; 2007 Jan; 78(1):013902. PubMed ID: 17503928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visualization of polar nanoregions in lead-free relaxors via piezoresponse force microscopy in torsional dual AC resonance tracking mode.
    Liu N; Dittmer R; Stark RW; Dietz C
    Nanoscale; 2015 Jul; 7(27):11787-96. PubMed ID: 26106953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy.
    Seol D; Park S; Varenyk OV; Lee S; Lee HN; Morozovska AN; Kim Y
    Sci Rep; 2016 Jul; 6():30579. PubMed ID: 27466086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatic force spectroscopy on insulating surfaces: the effect of capacitive interaction.
    Takagi A; Yamada F; Matsumoto T; Kawai T
    Nanotechnology; 2009 Sep; 20(36):365501. PubMed ID: 19687559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.
    Romanyuk K; Luchkin SY; Ivanov M; Kalinin A; Kholkin AL
    Microsc Microanal; 2015 Feb; 21(1):154-63. PubMed ID: 25555020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calibration of the torsional and lateral spring constants of cantilever sensors.
    Parkin JD; Hähner G
    Nanotechnology; 2014 Jun; 25(22):225701. PubMed ID: 24807706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy.
    Balke N; Jesse S; Carmichael B; Okatan MB; Kravchenko II; Kalinin SV; Tselev A
    Nanotechnology; 2017 Jan; 28(6):065704. PubMed ID: 28050969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the electromechanical modelling of a resonating nano-cantilever-based transducer.
    Teva J; Abadal G; Davis ZJ; Verd J; Borrisé X; Boisen A; Pérez-Murano F; Barniol N
    Ultramicroscopy; 2004 Aug; 100(3-4):225-32. PubMed ID: 15231314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy.
    Balke N; Maksymovych P; Jesse S; Herklotz A; Tselev A; Eom CB; Kravchenko II; Yu P; Kalinin SV
    ACS Nano; 2015 Jun; 9(6):6484-92. PubMed ID: 26035634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration.
    Slattery AD; Blanch AJ; Quinton JS; Gibson CT
    Ultramicroscopy; 2013 Aug; 131():46-55. PubMed ID: 23685172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct probing of solvent-induced charge degradation in polypropylene electret fibres via electrostatic force microscopy.
    Kim J; Jasper W; Hinestroza J
    J Microsc; 2007 Jan; 225(Pt 1):72-9. PubMed ID: 17286696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cantilever signature of tip detachment during contact resonance AFM.
    Kalafut D; Wagner R; Cadena MJ; Bajaj A; Raman A
    Beilstein J Nanotechnol; 2021; 12():1286-1296. PubMed ID: 34900510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual frequency atomic force microscopy on charged surfaces.
    Baumann M; Stark RW
    Ultramicroscopy; 2010 May; 110(6):578-81. PubMed ID: 20227181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate and precise calibration of AFM cantilever spring constants using laser Doppler vibrometry.
    Gates RS; Pratt JR
    Nanotechnology; 2012 Sep; 23(37):375702. PubMed ID: 22922668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic force microscope characterization of a resonating nanocantilever.
    Abadal G; Davis ZJ; Borrisé X; Hansen O; Boisen A; Barniol N; Pérez-Murano F; Serra F
    Ultramicroscopy; 2003; 97(1-4):127-33. PubMed ID: 12801665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.