These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26558574)

  • 21. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal Conductivity of Polyamide-6,6/Carbon Nanotube Composites: Effects of Tube Diameter and Polymer Linkage between Tubes.
    Keshtkar M; Mehdipour N; Eslami H
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31500250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites.
    Liao Q; Liu Z; Liu W; Deng C; Yang N
    Sci Rep; 2015 Nov; 5():16543. PubMed ID: 26552843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid).
    Amrollahi A; Hamidi AA; Rashidi AM
    Nanotechnology; 2008 Aug; 19(31):315701. PubMed ID: 21828793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular interactions and thermal transport in ionic liquids with carbon nanomaterials.
    França JMP; Nieto de Castro CA; Pádua AAH
    Phys Chem Chem Phys; 2017 Jul; 19(26):17075-17087. PubMed ID: 28621790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical conductivities of composites with aligned carbon nanotubes.
    Li C; Chou TW
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2518-24. PubMed ID: 19437996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental Investigation of Thermal Conductivity and Viscosity of SiO₂/Multiwalled Carbon Nanotube Hybrid Nanofluids.
    Amini F; Miry SZ; Karimi A; Ashjaee M
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3398-3407. PubMed ID: 30744767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preformed nanoporous carbon nanotube scaffold-based multifunctional polymer composites.
    Oh Y; Islam MF
    ACS Nano; 2015 Apr; 9(4):4103-10. PubMed ID: 25792251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Importance of interfaces in governing thermal transport in composite materials: modeling and experimental perspectives.
    Roy AK; Farmer BL; Varshney V; Sihn S; Lee J; Ganguli S
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):545-63. PubMed ID: 22295993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.
    Kholmanov I; Kim J; Ou E; Ruoff RS; Shi L
    ACS Nano; 2015 Dec; 9(12):11699-707. PubMed ID: 26529570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Comparative Study on the Role of Polyvinylpyrrolidone Molecular Weight on the Functionalization of Various Carbon Nanotubes and Their Composites.
    Namasivayam M; Andersson MR; Shapter JG
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon Nanotubes Grown on Graphite Films as Effective Interface Enhancement for an Aluminum Matrix Laminated Composite in Thermal Management Applications.
    Chang J; Zhang Q; Lin Y; Zhou C; Yang W; Yan L; Wu G
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38350-38358. PubMed ID: 30360077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
    Sahoo S; Chitturi VR; Agarwal R; Jiang JW; Katiyar RS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19958-65. PubMed ID: 25350877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling the increase in anisotropic reaction rates in metal nanoparticle oxidation using carbon nanotubes as thermal conduits.
    Abrahamson JT; Nair N; Strano MS
    Nanotechnology; 2008 May; 19(19):195701. PubMed ID: 21825719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Length dependence of carbon nanotube thermal conductivity and the "problem of long waves".
    Mingo N; Broido DA
    Nano Lett; 2005 Jul; 5(7):1221-5. PubMed ID: 16178214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation between thermal conductivity and bond length alternation in carbon nanotubes: a combined reverse nonequilibrium molecular dynamics--crystal orbital analysis.
    Alaghemandi M; Schulte J; Leroy F; Müller-Plathe F; Böhm MC
    J Comput Chem; 2011 Jan; 32(1):121-33. PubMed ID: 20645298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring the thermal boundary resistance of van der Waals contacts using an individual carbon nanotube.
    Hirotani J; Ikuta T; Nishiyama T; Takahashi K
    J Phys Condens Matter; 2013 Jan; 25(2):025301. PubMed ID: 23196929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation.
    Spanos P; Elsbernd P; Ward B; Koenck T
    Philos Trans A Math Phys Eng Sci; 2013 Jun; 371(1993):20120494. PubMed ID: 23690646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes.
    Aliev AE; Lima MH; Silverman EM; Baughman RH
    Nanotechnology; 2010 Jan; 21(3):035709. PubMed ID: 19966394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.