These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26558609)
21. Methionine Functionalized Biocompatible Block Copolymers for Targeted Plasmid DNA Delivery. Wu Y; Zhang W; Zhang J; Mao ZX; Ding L; Li H; Ma R; Tang JH J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449233 [TBL] [Abstract][Full Text] [Related]
22. Facile synthesis of multivalent folate-block copolymer conjugates via aqueous RAFT polymerization: targeted delivery of siRNA and subsequent gene suppression. York AW; Zhang Y; Holley AC; Guo Y; Huang F; McCormick CL Biomacromolecules; 2009 Apr; 10(4):936-43. PubMed ID: 19290625 [TBL] [Abstract][Full Text] [Related]
23. Design and synthesis of self-degradable antibacterial polymers by simultaneous chain- and step-growth radical copolymerization. Mizutani M; Palermo EF; Thoma LM; Satoh K; Kamigaito M; Kuroda K Biomacromolecules; 2012 May; 13(5):1554-63. PubMed ID: 22497522 [TBL] [Abstract][Full Text] [Related]
24. Arginine- and lysine-specific polymers for protein recognition and immobilization. Renner C; Piehler J; Schrader T J Am Chem Soc; 2006 Jan; 128(2):620-8. PubMed ID: 16402850 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of short cationic antimicrobial peptidomimetics containing arginine analogues. Baldassarre L; Pinnen F; Cornacchia C; Fornasari E; Cellini L; Baffoni M; Cacciatore I J Pept Sci; 2012 Sep; 18(9):567-78. PubMed ID: 22807132 [TBL] [Abstract][Full Text] [Related]
26. Endolytic, pH-responsive HPMA-b-(L-Glu) copolymers synthesized via sequential aqueous RAFT and ring-opening polymerizations. Holley AC; Ray JG; Wan W; Savin DA; McCormick CL Biomacromolecules; 2013 Oct; 14(10):3793-9. PubMed ID: 24044682 [TBL] [Abstract][Full Text] [Related]
27. Guanidine-Containing Methacrylamide (Co)polymers via aRAFT: Toward a Cell Penetrating Peptide Mimic(). Treat NJ; Smith D; Teng C; Flores JD; Abel BA; York AW; Huang F; McCormick CL ACS Macro Lett; 2012 Jan; 1(1):100-104. PubMed ID: 22639734 [TBL] [Abstract][Full Text] [Related]
28. A Designed Tryptophan- and Lysine/Arginine-Rich Antimicrobial Peptide with Therapeutic Potential for Clinical Antibiotic-Resistant Candida albicans Vaginitis. Jin L; Bai X; Luan N; Yao H; Zhang Z; Liu W; Chen Y; Yan X; Rong M; Lai R; Lu Q J Med Chem; 2016 Mar; 59(5):1791-9. PubMed ID: 26881456 [TBL] [Abstract][Full Text] [Related]
29. Towards the Development of Synthetic Antibiotics: Designs Inspired by Natural Antimicrobial Peptides. Azmi F; Skwarczynski M; Toth I Curr Med Chem; 2016; 23(41):4610-4624. PubMed ID: 27570165 [TBL] [Abstract][Full Text] [Related]
30. Antimicrobial benzodiazepine-based short cationic peptidomimetics. Zats GM; Kovaliov M; Albeck A; Shatzmiller S J Pept Sci; 2015 Jun; 21(6):512-9. PubMed ID: 25807936 [TBL] [Abstract][Full Text] [Related]
31. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860 [TBL] [Abstract][Full Text] [Related]
32. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens. Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489 [TBL] [Abstract][Full Text] [Related]
34. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. Kim H; Jang JH; Kim SC; Cho JH J Antimicrob Chemother; 2014 Jan; 69(1):121-32. PubMed ID: 23946320 [TBL] [Abstract][Full Text] [Related]
35. Synthetic Random Copolymers as a Molecular Platform To Mimic Host-Defense Antimicrobial Peptides. Takahashi H; Caputo GA; Vemparala S; Kuroda K Bioconjug Chem; 2017 May; 28(5):1340-1350. PubMed ID: 28379682 [TBL] [Abstract][Full Text] [Related]
36. Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane. Dai Y; Cai X; Shi W; Bi X; Su X; Pan M; Li H; Lin H; Huang W; Qian H Amino Acids; 2017 Sep; 49(9):1601-1610. PubMed ID: 28664269 [TBL] [Abstract][Full Text] [Related]
37. Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Gabriel GJ; Madkour AE; Dabkowski JM; Nelson CF; Nüsslein K; Tew GN Biomacromolecules; 2008 Nov; 9(11):2980-3. PubMed ID: 18850741 [TBL] [Abstract][Full Text] [Related]
38. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. Mai XT; Huang J; Tan J; Huang Y; Chen Y J Pept Sci; 2015 Jul; 21(7):561-8. PubMed ID: 25826179 [TBL] [Abstract][Full Text] [Related]
39. Two novel families of antimicrobial peptides from skin secretions of the Chinese torrent frog, Amolops jingdongensis. Chen Z; Yang X; Liu Z; Zeng L; Lee W; Zhang Y Biochimie; 2012 Feb; 94(2):328-34. PubMed ID: 21816202 [TBL] [Abstract][Full Text] [Related]
40. Properties and structure-activity studies of cyclic beta-hairpin peptidomimetics based on the cationic antimicrobial peptide protegrin I. Robinson JA; Shankaramma SC; Jetter P; Kienzl U; Schwendener RA; Vrijbloed JW; Obrecht D Bioorg Med Chem; 2005 Mar; 13(6):2055-64. PubMed ID: 15727859 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]