BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26558694)

  • 1. Grain boundary resistance to amorphization of nanocrystalline silicon carbide.
    Chen D; Gao F; Liu B
    Sci Rep; 2015 Nov; 5():16602. PubMed ID: 26558694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amorphization driven by defect-induced mechanical instability.
    Jiang C; Zheng MJ; Morgan D; Szlufarska I
    Phys Rev Lett; 2013 Oct; 111(15):155501. PubMed ID: 24160611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale engineering of radiation tolerant silicon carbide.
    Zhang Y; Ishimaru M; Varga T; Oda T; Hardiman C; Xue H; Katoh Y; Shannon S; Weber WJ
    Phys Chem Chem Phys; 2012 Oct; 14(38):13429-36. PubMed ID: 22948711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Multiple Roles of Small-Angle Tilt Grain Boundaries in Annihilating Radiation Damage in SiC.
    Jiang H; Wang X; Szlufarska I
    Sci Rep; 2017 Feb; 7():42358. PubMed ID: 28181488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size Dependence of Nanoscale Wear of Silicon Carbide.
    Tangpatjaroen C; Grierson D; Shannon S; Jakes JE; Szlufarska I
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1929-1940. PubMed ID: 27997110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small-Angle Twist Grain Boundaries as Sinks for Point Defects.
    Jiang H; Szlufarska I
    Sci Rep; 2018 Feb; 8(1):3736. PubMed ID: 29487304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and simulation of boron-doped nanocrystalline silicon carbide thin film by a field theory.
    Xiong L; Chen Y; Lee JD
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1034-7. PubMed ID: 19441448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation on the effect of high partial pressure of hydrogen on the nanocrystalline structure of silicon carbide thin films prepared by radio-frequency magnetron sputtering.
    Daouahi M; Omri M; Kerm AG; Al-Agel FA; Rekik N
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1409-17. PubMed ID: 25459700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical properties and applications of nanocrystalline, microcrystalline, and epitaxial cubic silicon carbide films.
    Zhuang H; Yang N; Zhang L; Fuchs R; Jiang X
    ACS Appl Mater Interfaces; 2015 May; 7(20):10886-95. PubMed ID: 25939808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation tolerance of nanocrystalline ceramics: insights from Yttria Stabilized Zirconia.
    Dey S; Drazin JW; Wang Y; Valdez JA; Holesinger TG; Uberuaga BP; Castro RH
    Sci Rep; 2015 Jan; 5():7746. PubMed ID: 25582769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix.
    Wan Z; Huang S; Green MA; Conibeer G
    Nanoscale Res Lett; 2011 Feb; 6(1):129. PubMed ID: 21711625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural evolutions in polymer-derived carbon-rich amorphous silicon carbide.
    Wang K; Ma B; Li X; Wang Y; An L
    J Phys Chem A; 2015 Jan; 119(4):552-8. PubMed ID: 25490064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defect-induced homogeneous amorphization of silicon: the role of defect structure and population.
    Lulli G; Albertazzi E; Balboni S; Colombo L
    J Phys Condens Matter; 2006 Feb; 18(6):2077-88. PubMed ID: 21697576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.
    Vetterick GA; Gruber J; Suri PK; Baldwin JK; Kirk MA; Baldo P; Wang YQ; Misra A; Tucker GJ; Taheri ML
    Sci Rep; 2017 Sep; 7(1):12275. PubMed ID: 28947751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multi-Scale Approach for Phase Field Modeling of Ultra-Hard Ceramic Composites.
    Clayton JD; Guziewski M; Ligda JP; Leavy RB; Knap J
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Photoluminescence of nano-SiC annealed by pulse laser].
    Yu W; He J; Sun YT; Han L; Fu GS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Apr; 25(4):506-8. PubMed ID: 16097671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic simulation study of tensile deformation in nanocrystalline and single-crystal Au.
    Wu CD; Tsai HW
    J Mol Model; 2017 Apr; 23(4):114. PubMed ID: 28289955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A crossover in the mechanical response of nanocrystalline ceramics.
    Szlufarska I; Nakano A; Vashishta P
    Science; 2005 Aug; 309(5736):911-4. PubMed ID: 16081730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous nanocrystalline cubic silicon carbide films prepared by inductively coupled plasma chemical vapor deposition.
    Cheng Q; Xu S; Long J; Huang S; Guo J
    Nanotechnology; 2007 Nov; 18(46):465601. PubMed ID: 21730481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.